From Perpendicular Recording to Heat Assisted Magnetic Recording

From Perpendicular Recording to Heat Assisted Magnetic Recording

时间:2012年 6月 20日(星期三)下午 2点
地点:微电子楼 401室
报告人:高凯中博士(美国 Seagate公司,磁介质与磁头技术研究开发部管理技术总监)

高凯中, 北京大学物理学学士, UCSD 物理学博士, 现任 Seagate 公司磁介质与磁头技术研究开发部管理技术总监(Managing Principle Engineer), IEEE磁学协会的技术委员会主席(IEEE Magnetics Society Technical Committee Chair), 并带领团队实现首个 1Tb/in2 存储密度示范.

在 2003 年获得 UCSD磁记录研究中 (CMRR)颁发的第一任杰出校友奖 (Schultz’s Award); 2004 年获得美国国家信息存储工业联合会(后更名为信息存储工业协会, INSIC)年度科技成果奖(Technical Achievement Award); 2009 年, 成为明尼苏达州年度最杰出青年工程师(Young Engineer of the Year for the State of Minnesota); 2011 年获得 IEEE 美国中西部杰出职业工程师奖 (IEEE Region 4, Outstanding Professional Award);曾任中科院李政道讲座第六期嘉宾. 2006-07 年,曾任 IEEE 磁学协会双城分会主席; 2009-10 年, 曾任 IEEE 磁学协会分会委员会主席 (Chapters Chair), 并主持建立了北京,南京和香港分会; 2009-11年曾任明州华美信息存储协会主席. 在过去的 10 年中, 高凯中博士在信息存储领域有超过 50 篇论文和超过 50 项专利申请, 并已有过 20 项被批准成为美国专利, 其中若干项专利设计已被磁记录领域各大公司使用 , 成就了垂直磁存储技术的应用并帮助希捷公司保持在该领域的技术领先 , 包括最近带领团队实现的 1Tb/in2 存储记录示范, 是信息存储技术领域中最高密度。

Magnetic recording technology has shown a rapid growth over the past decades with the area density growth rate more than 40% due to introduction of giant magneto-resistive (GMR), tunneling magneto-resistive (TMR) head and perpendicular recording technology. In this talk, we give a brief review of recent progresses on perpendicular recording media technology and look at possible extension for ultra high areal density magnetic recording. Unlike traditional way to jump into materials property and medium growth condition, we review this progress based on learning from recording physics and media design concept, and show how the media technology progresses, i.e. technology development, against research focus.

In addition, to scale to even higher areal density, while maintaining a proper balance between media signal-to-noise, thermal stability and writability. It is believed that the energy-assisted magnetic recording will be soon required. Heat Assisted Magnetic Recording (HAMR) can achieve this balance by allowing high anisotropy (Hk) media to be written by heating the media during the writing process to temporarily lower the Hk. There are multiple major challenges in designing the HAMR system. A few of them are: 1) HAMR recording physics, 2) Laser light delivery to the head, 3) Optical and magnetic field focusing and collocation, and 4) Thermal management. Here, we are going to briefly review these key issues and the key contributing factors that enable existing technology: perpendicular recording. Then suggest future research direction for energy assisted magnetic recording. We will also show a few examples on the progress of HAMR and learning from recording physics, modeling and materials science that will enable heat assisted magnetic recording.