教学大纲

Course Syllabus

Name:Principles of Optoelectronics and Sensor Applications

Time & Place:Week 9-16, Monday and Thursday, Class 3-4,东下院310

 Textbook

PochiYeh, Optical waves in layered media, John Wiley & Sons.

S. M. Weiss and G. Rong, “Porous silicon waveguides for small molecule detection,” in Nanoscience and Nanotechnology for Chemical and Biological Defense, edited by R. Nagarajan, W. Zukas, T. A. Hatton, and S. Lee (ACS Symposium Series vol. 1016, Oxford University Press, 2010), Chpt. 14, pp. 185-194.

Website:http://pubs.acs.org/doi/abs/10.1021/bk-2009-1016.ch014

References

Ammon Yariv,Optical Electronics in Modern Communications, 5th Edition,电子工业出版社

Ammon Yariv, PochiYeh, Optical waves on crystals, John Wiley & Sons

Eugene Hecht, Optics, 2nd Edition, Addison-Wesley

John D. Joannopoulos, Photonic Crystal-Molding the Flow of Light,2nd Edition, Princeton University Press, 2008.

Contents:

 Theory:

Chapter 1. The Electromagnetic Field

1.1   Maxwell’s Equations and Boundary Conditions

1.2   Energy Density and Energy Flux

1.3   Complex Numbers and Monochromatic Fields

1.4   Wave Equation and Monochromatic Plane Waves

1.5   Polarization States of Light

1.6   Partially Polarized and Unpolarized Light

1.7   Elementary Theory of Coherence

Chapter 2. Interaction of Electromagnetic Radiation with Matter

2.1 Dielectric Constant and Atomic Polariizability

2.2 Classical Electron Model

2.3 Dispersion and Complex Refractive Index

2.4 Kramers-Kronig Relations

2.5 Optical Pulses and Group Velocity

Chapter3. Reflection and Refraction of Plane Waves

3.1 Snell’s Law and Fresnel’s Formulas

3.2 Total Internal Reflection

3.3 Polarization by Reflection; Brewster Angle

3.4 Reflection at Surface of Absorbing Medium

Chapter 4. Optics of A Homogeneous and Isotropic Layer

4.1 Electromagnetic Treatment

4.2 Airy’s Formulas

4.3 Transmittance, Reflectance, and Absorptance

4.4 Thick Layers and Spectral Averaging

Chapter 5.Matrix Formulation for Isotropic Layered Media

5.1 2×2 Matrix Formulation

5.2 Transmittance and Reflectance

5.3 General Theorem on Layered Media

Chapter 6. Optics of Periodic Layered Media

6.1 Periodic Layered Media

6.2 Bloch Waves and Band Structures

6.3 Bragg Reflectors

6.4 Form Birefringence

6.5 Resonant Tunneling

Chapter 7. Guided Waves in Layered Media

7.1 Symmetric Slab Waveguides

7.2 Asymmetric Slab Waveguides

7.3 Multilayer Waveguides

7.4 Surface Plasmons

7.5 Electromagnetic Bloch Surface Waves

7.6 General Properties of Dielectric Waveguides

7.7 Perturbation Theory and Mode Coupling

7.8 Coupling of Two Waveguides

7.9 Effective Index Theory

7.10 Coupling of N Identical Waveguides

Chapter 8

8.1 Porous silicon formation and fabrication

8.2 Label-free biosensors based on porous silicon thin film optoelectronic devices

8.3 Analysis of the performances of porous silicon biosensors

Labs

  1. Fabrication of a Novel Nanomaterial-Porous Silicon

1.1   Formation mechanism of porous silicon

1.2   Electrochemical etching techniques and experimental procedures

1.3   HF handling principles

  1. Characterization of Porous Silicon

2.1   Interference spectra fitting and gravimetrical measurement

2.2   Characterization of porosity and etch rate for porous silicon material

2.3   Scanning Electron Microscopy cross-sectional imaging of porous silicon (optional)

  1. Design and Fabrication of Thin Film Optoelectronic Device based on Porous Silicon

3.1   Design of thin film porous silicon optoelectronic device, including single layer interferometer, double layer waveguide, multi-layer Bragg mirror and resonant microcavity

3.2   Simulation of the reflectance spectra of porous silicon thin film optoelectronic devices

3.3   Measurement of thin film porous silicon optoelectronic devices with spectrometer instruments, and comparison with simulation results

  1. Experimental Detection of DNA-DNA or Antigen-Antibody interaction

4.1   Biofunctionalization of porous silicon for biomolecular detection, including salinization, glutaraldehyde immobilization, and probe immobilization.

4.2   Specific detection of the interactions between bio-probes and bio-targets with student selected porous silicon thin film optoelectronic sensors

4.3   Characterization of biosensors’ sensitivity and specificity

Grading Policy:

25% Homework, 25% Mid-term exam, 25% Final exam, 15%Lab Performance and Experimental Results, 10% Lab report

 

考核及成绩评定

日常作业 25%
期中考试 25%
期末考试 25%
实验过程和结果 15%
实验报告 10%

介绍说明

难点
  • 麦克斯韦方程组的理解;
  • 电磁场矢量波方程;
  • 电磁场边界条件
  • TE、TM模
重点
  • 平面介质导波光学;
  • 坡印廷矢量计算;
  • 传统光电传感器的缺点,新型光电传感器的原理与挑战;
其它
  • 好好做实验,认真写作业,不要缺勤呀。。