

8-bit Full Adder Design

TA : JIAO Jiajia

Jun.4, 2013

Outline

* Background

* Lab3 Introduction

* Upload the Lab report

Background

1000um

Arithmetic-logic units are the heart of any microprocessor

Background

* An ALU has four major parts

- Arithmetic block
- Logic block
- Multiplexers
- Registers

* The core of the arithmetic block is an adder

Adder

 $= A \oplus B \oplus C = P \oplus C$ $C_{out} = AB + (A + B)C$ $= \overline{\overline{AB} + (\overline{A} + \overline{B})\overline{C}} = MAJ(A, B, C)$

PGK

For a full adder, define what happens to carries

- Generate: C_{out} = 1 independent of C
 - G = A B
- Propagate: C_{out} = C
 - P = A ⊕ B

 $C_o(G, P) = G + PC_i$

$$S(G, P) = P \oplus C_i$$

– Kill: C_{out} = 0 independent of C

• K = ~A • ~B

Note that we will be sometimes using an alternate definition for

Propagate (P) = A + B

Full Adder Design-typical

Complimentary Static CMOS Full Adder__28 Transistors V_{DD} V_{DD} $C_o = AB + BC_i + AC_i$ B р— <u>В</u> $S = ABC_i + \overline{C_o}(A + B + C_i)$ A -- 0 þ− A B -- 0 þ— <u>В</u> p− C_i /DD A --0 х b-Ci S $C_i -$ – A - C_i - **B** V_{DD} C; -C, – *B*

SJTU School Of Microelectronics

Multi-bit Full Adder Design

- ***** Carry-Ripple Adder
- Carry-Skip Adder
- * Carry-Lookahead Adder
- Carry-Select Adder
- ♣ Tree Adder

Carry-Ripple Adder

- * A N-bit full adder can be composed of N 1-bit full adder
- * Critical path delay

$$t_{adder} \square (N-1)t_{carry} + t_{sum}$$

CRA is not suite for long-word addition due to its propagation delay

Lab3 Introduction

Introduction

* Object:

- Design a 8-bit Full Adder for a 8-bit ALU
- * You can select any full adder structure and implement it with any circuit family:
 - Complementary Static CMOS
 - Pass-Transistor
 - Dynamic

Design Flow

- ✤ 1. Determine the FA structure
 - Carry-Ripple Adder(basic)
- *2. Determine circuit family
 - Complementary Static CMOS
 - Pass-Transistor
 - Dynamic
- **★**3. Design the full adder
 - Single-bit adder(Schematic/MOS size)
 - Multi-bit adder(Symbol)

Design Flow(cont')

*****4. Simulation

- Functionality
- Performance(Delay, power, EDP)
- **★**5. Optimize the performance
 - Size optimization
 - Structure optimization

LAB Requirements

Basic Part

- Design a 8-bit carry-ripple adder with any circuit family
- Verify it and report the performance of your design, including delay, EDP, area(# of transistors)

LAB Requirements

* Optional part: Tasks

- Design your full adder with other circuit families and compare the performance metric EDP by the possible methods:
 - Insert the buffers to optimize the stages and transistors size for a smaller transmission latency
 - Reduce the Vdd to decrease the power consumption
 - Combine the structure with other circuit families...
- * You can choose one or more ways to finish if you have enough time

 $\approx \log 018.scs$ ◆Vdd 1.8V MOS L 180nm **₩**unit • Time eg: input 3n, not 3ns • Cap eg: input 25f, not 25fF ***** Model Name: •NMOS -- nchPMOS -- pch

Report Requirements

* Your lab report should include:

- Circuit schematic of your design, including your transistor size(you may need to create symbols for your sub-circuits)
- Your patterns to verify the full adder and corresponding performance index(Delay, power, EDP)

Report Submit

Submit a pdf or word document with name lab3_adder_id_name, eg: lab3_adder_511...._zhanghua.pdf

* Upload it to MOODLE system no later than 23:55AM, June 16, 2013(two weeks)

Reference

* Jan M. etc, Digital Integrated Circuits: A Design Perspective, Second Edition

. A HARDON

Let's Start!

