

SCHOOL OF MICROELECTRONICS

Chapter 3 PN Junction and Diode

3.2 PN Diode--Small Signal Model and

<u>Transient Response Model</u>

Shirla Cheng xlcheng@sjtu.edu.cn 2012.3.20

SCHOOL OF MICROELECTRONICS

Outline

Small Signal Model

- Introduction to Impedance and Admittance
- Reverse-bias Capacitor
- Forward-bias Diffusion Admittance
- Transient Response Model
 - Turn-Off Transient of PN Diode

 Turn-on Transient of PN Diode

Some stand a stand stand

Introduction to Impedance and Admittance confidential of shanohai Jiao confidential of shandh

 $X_L = I_m(Z_L) = \omega L$

Impedance (阻抗,Z)

- A sinusoidal(正弦) signal is applied on a device, the ratio between voltage phasor and current phasor. $Z = U_m / I_m$ (ohm)
- $\boxed{}$ Z=Z_R+Z_c+Z_l:
 - electrical resistance(电阻):Z_R= R
 - capacitor resistance(容抗):Z_c=1/(jωC) =-j/(ωC (wis AC signal frequency, rad/s)
 - Inductive resistance(感抗): Z₁ =jωL=j2πfL (f is AC single frequency, Hz)
- Z is a complex number: $Z = R + jX = |Z| \angle \theta_z$ $X_c = I_m(Z_c) = -\frac{1}{\omega C}$
 - R=R_e(Z) is resistance component(阻抗的电阻分量)
 - X=I_m(Z) is reactance component (阻抗的电抗分量)
 - |Z| is the module of impedance(阻抗的模)
 - θ₇ is impedence argument (阻抗的幅角)

Prepared by Xiulan Cheng/程秀兰

(容抗)

(感抗)

SCHOOL OF MICROELECTRONICS

Admittance(导纳)

Definition

Admittance is the reciprocal (倒数) of impedance.

 \mathbb{N} Y=1/Z =I_m/U_m (unit, S=simense)

The admittance of electrical resistance (conductance) $Y_R = 1/R = G$ The admittance of capacitor $Y_s = i \omega C$

The admittance of a inductor:

Admittance is also a complex number:

 $Y_L = 1/j \omega L = -j \omega L$

 $\left|Y\right| = \frac{1}{\left|Z\right|} = \frac{I_m}{U_m}$

$$\theta_{Y} = -\theta_{Z} = \theta_{i} - \theta_{u}$$

 $B_c = I_m(Y_c) = \omega C$ 为电容的电纳,简称容纳。 $B_L = I_m(Y_L) = -\frac{1}{\omega L}$ 为电感的电纳,简称感纳。

 $Y = |Y| \angle \theta_r = G + jB$

Why Discuss Small Signal Model

- When semiconductor devices with pn junctions are used in linear amplifier circuits, the small-signal characteristics of the pn junction become important.
 - for example, sinusoidal(正弦) signals are superimposed (施加) on the DC currents and voltages. V_A+v_a

Small signal equivalent circuit

R=1/G

HOOL OF MICROELECTRONICS

Small Signal Admittance (小信号导纳)

Definition

- Small signal voltage/current:
 - When a small and low-frequency sinusoidal voltage superimposes on the DC bias

Small signal admittance (Y)

- Y=i/v_a =G+j ω C, where j= $\sqrt{-1}$, ω is the frequency of AC signal(rad/s) ,G is conductance
- used to characterize the AC response of a passive device (无源器件),e.g., diode.

Forward-bias: G cannot be neglected, and need consider minority's contribution.

上海交通大學

on the strangenties of strangenties used to be strangenties of strangenties of strangenties used to be confidential of shanghat Jiao Tong University

SCHOOL OF MICROELECTRONICS

SCHOOL OF MICROELECTRONICS

Depletion Capacitor

 $W \cong \left[\frac{2\varepsilon_s}{qN_B}(V_{bi} - V_A)\right]^{1/2}$ For a single - side abrupt junction

W $\cong \left[\frac{12\varepsilon_s}{qa}(V_{bi} - V_A)\right]^{1/3}$ For a linear graded pn junction.

where $N_{B}^{}$ - the impurity concentration of the light doped side.

 $N_B(x) = bx^m$

where b > 0 and m is a constant.

 $m = 1 \Rightarrow$ single - side linear graded junction

 $m = 0 \Rightarrow$ single - side abrupt junction

 $m < 0 \Rightarrow$ (single - side) hyperabrupt junction

(by implantation and epitaxy

for a single - side exponential distribution pn diode,

 $\begin{cases} m = 0, b = N_B \implies single - side abrupt junction \\ m = 1, b = a/4 \implies single - side linear junction \end{cases}$

 $\therefore C_J = \frac{K_S \varepsilon_0 A}{\left[\frac{(m+2)K_S \varepsilon_0}{qb} (V_{bi} - V_A)\right]^{1/(m+2)}}$

$$\therefore C_{J0} = C_J \Big|_{V_A = 0} = \frac{K_S \varepsilon_0 A}{\left[\frac{(m+2)K_S \varepsilon_0}{qb} V_{bi}\right]^{1/(m+2)}}$$

$$: C_{J} = \frac{C_{J0}}{\left[1 - \frac{V_{A}}{V_{bi}}\right]^{1/(m+2)}}$$

SCHOOL OF MICROELECTRONICS

Application of Reverse-Bias Capacitor (I) Varactor (变容二极管)

Definition

- ☑ Varactor=variable+reactor(电抗器)
 - reactance of a capacitor=1/jωC
- Capacitor varies from voltage to voltage

Modulation ratio (TR)

 $TR \equiv \frac{C_J(V_{A1})}{C_J(V_{A2})} \cong \left(\frac{V_{A1}}{V_{A2}}\right)^{1/(m+2)}$ (reverse bias, $V_A >> V_{bi}$)

The largest capacitor ratio among a voltage range
 The smaller the m, the larger the TR → m=-1 (single-side hyperabrupt junction) can get the largest TR.

Application (m=0,m=-1)

Parameter magnification, resonant wave generation, mixing frequency, demodulation, voltage-variable modulation
Prepared by Xiulan Cheng/程秀兰

Application of Reverse-Bias Capacitor (II) SCHOOL OF

上海交通大學 | 微电子学院

Parameters' Extraction and Measuremnt of Dopant Distribution

Example

If the slope of the $(1/C_{dep})^2$ vs. V_A characteristic is -2x10^{23} $F^{-2}V^{-1}$, the intercept is 0.84V, and A is 1 μ m², find the lighter and heavier doping concentrations $N_{\rm l}$ and $N_{\rm h}$.

Solution:

 $N_{l} = 2/(slope \times q\varepsilon_{s}A^{2})$ = 2/(2×10²³×1.6×10⁻¹⁹×12×8.85×10⁻¹⁴×10⁻⁸ cm²) = 6×10¹⁵ cm⁻³ $= \frac{10^{20}}{6 \times 10^{15}} e^{\frac{0.84}{0.026}} = 1.8 \times 10^{18} \text{ cm}^{-3}$

$$V_{bi} = \frac{kT}{q} \ln \frac{N_h N_l}{{n_i}^2} \implies N_h = \frac{n_i^2}{N_l} e^{\frac{qV_{bi}}{kT}}$$

SCHOOL OF MICROELECTRONICS

Reverse-bias Conductance

- All standard capacitor have their conductance
- For a reverse-bias PN diode, there is a very small conductance

(a) Small signal equivalent circuit for a reverse-biased PN diode

Prepared by Xiulan Cheng/程秀兰

low frequency conductance : $G_0 = \frac{dI}{dV_A}$ $\because I = I_0 \left(e^{qV_A/kT} - 1 \right)$ $\therefore G_0 = \frac{dI}{dV_A} = \frac{q}{kT} I_0 e^{qV_A/kT} = \frac{q}{kT} (I + I_0)$ if $V_A >> \frac{q}{kT} = V_{th}, I \rightarrow -I_0, G_0 \rightarrow 0$ if $V_A \sim n * \frac{q}{kT} = nV_{th} (n < 10)$, DC thermalG - R current is dominant $I_{G-R} = -\frac{qAn_i}{2\tau_0}W$: parasitical conductance $G_0 = \frac{dI_{G-R}}{dV_A} = \frac{qAn_i W / 2\tau_0}{(m+2)(V_{hi} - V_A)}$ $r_d = \frac{1}{C}$

orward-bias Diffusion Admittanc

SCHOOL OF MICROELECTRONICS

Capacitors of a Forward-biased PN Diode

Two types of capacitance associated with a pn junction forward-biased:

- $C_J: \text{ Junction Capacitor } (depletion capacitance) \\ \text{ due to variation of depletion charge}$
 - dominates at low forward biases, reverse biases
- \bigcirc C_D :diffusion capacitance due to variation of stored minority charge in the quasi-neutral regions'
 - dominates at moderate to high forward biases
 - Caused by excess minority carrier charge Q_n and Q_p in neutral regions.
 - Only important in forward bias.
 - For a one-sided p+n junction, $Q_P >> Q_N \Rightarrow Q = Q_P + Q_N \cong Q_P$

$$C_{\rm D} = \frac{\mathrm{d}Q_{\rm p}}{\mathrm{d}V} = \frac{q}{kT}qAL_{\rm p}p_{\rm n0}\exp\left(\frac{qV_{\rm A}}{kT}\right) = \frac{q}{kT}I\tau_{\rm p} = \frac{I\tau_{\rm p}}{kT/q} = \frac{I}{V}$$

Prepared by Xiulan Cheng/程秀兰

Small signal equivalent circuit for a forward-biased PN diode

SCHOOL OF MICROELECTRONICS

Diffusion Admittance(扩散导纳)

Diffusion admittance

- Minority carriers accumulate on the boundary of depletion layer due to diffusion current → a admittance is produced due to minority carriers' charge caused by small signal. → diffusion admittance G_D
- **Diffusion resistance:** $r_d = 1/G_d$

$$Y = G_D + j\omega(C_D + C_J)$$

 $\approx G_D + j\omega C_D = Y_D$

Small signal equivalent circuit for a forward-biased PN diode

$$: I = I_0 \left(e^{qV_A/kT} - 1 \right)$$

$$: Y = \frac{dI}{dV_A} = \frac{q}{kT} I_0 e^{qV_A/kT} = \frac{q}{kT} \left(I + I_0 \right)$$

large forward - bias, $I >> I_0$

$$Y_D = \frac{q}{kT} (I + I_0) \approx \frac{q}{kT} I = \frac{I}{V_{th}}$$

Diffusion resistance:

$$r_d = \frac{1}{Y_D} \approx \frac{V_{th}}{I}$$

Prepared by Xiula

と済気通大学 | 微电子学院 Summary: Small Signal HOGelet TO HOL OF MICROELECTRONICS

Forward Bias

SCHOOL OF MICROELECTRONICS

For a reverse biased PN junction, it equals to a capacitor whose capacitance can reduce with the increase of reverse voltage. reverse-biased junction capacitor and varactor ; C-V measurement: determine the average doping concentration or profile on light doped side. For a forward-biased PN, minority carriers accumulate in the quasi-neutral zone which is very nearby depletion zone.

SCHOOL OF MICROELECTRONICS

Contents on Semiconductor Device Analysis

- Internal electrostatic model (equilibrium)
- Steady state response model (voltage stress, DC V_A)
- Small signal response model (V_A + v_a)
- Transient response Model (On/Off)

上海交通大學

微电子学院

Contractive of the strength of confidential of shanohai confidential of shanohai Jiao tong

Turn-Off Transient of PN Diode

- Suppose a pn-diode is forward biased, then suddenly turned off at time t = 0. Because of C_D , the voltage across the pn junction depletion region cannot be changed instantaneously.
- The delay in switching between the ON and OFF states is due to the time required to change the amount of excess minority carriers stored in the quasineutral regions.
- In order to turn the diode off, the excess minority carriers must be removed by net carrier flow out of the quasi-neutral regions and/or recombination

n or n

SCHOOL OF MICROELECTRONICS

Turn-Off Transient of PN Diode

CHOOL OF MICROELECTRONICS

Excess Minority Removal Mechanism

For p^+n diode forward - biased,

- Two mechanisms to remove excess minority in quasi-neutral zone (e.g., p⁺n)
 - Recombination: limited by the minority lifetime (τ_p)
 - Net carrier drift to return the other side due to the built-in field and reverse-bias voltage.
- t_s is the primary "figure of merit" used to characterize the transient response of pn junction diodes

Assumptions :

1) Comparing with power voltage (V_F and V_{Rd}), the largest forward voltage drop (V_{ON}) is small enough

$$I_F = \frac{V_F - V_{ON}}{R_F} \cong \frac{V_F}{R_F} \qquad I_R = \frac{V_R + v_A \big|_{0 < t \le t_s}}{R_R} \cong \frac{V_R}{R_F}$$

Prepared by Xiulan Cheng/程秀兰

according to Continuous Equation of Excess Hole charge

$$\frac{dQ_P}{dt} = I_{DIFF} - \frac{Q_P}{\tau_p}$$

when $0^+ \le t \le t_s$, $I_{DIFF} = -I_R = \text{cosntant}$
$$\frac{dQ_P}{dt} = -\left(I_R + \frac{Q_P}{\tau_p}\right) \quad 0^+ \le t \le t_s$$

$$\int_{Q_P(0^+)}^{Q_P(t_s)} \frac{dQ_P}{I_R + Q_P / \tau_p} = -\int_{0^+}^{t_s} dt = -t_s$$

$$\therefore t_s = -\tau_p \ln\left(I_R + Q_P / \tau_p\right)\Big|_{Q_P(0^+)}^{Q_P(t_s)} = \tau_p \ln\left[\frac{I_R + Q_P(0^+) / \tau_p}{I_R + Q_P(t_s) / \tau_p}\right]$$

before turning off it is a steady - state:

$$\frac{dQ_P}{dt} = i_{DIFF} - \frac{Q_P}{\tau_p} = 0 \Longrightarrow i_{DIFF} = \frac{Q_P(0^-)}{\tau_p} = \frac{Q_P(0^+)}{\tau_p} = I_F$$

when assume $Q_P(t_s) = 0$ at $t = t_s$

$$\therefore t_s = \tau_p \ln \left[\frac{I_R + Q_P(0^+) / \tau_p}{I_R + Q_P(t_s) / \tau_p} \right] = \tau_p \ln \frac{I_R + I_F}{I_R} \neq \tau_p \ln (1 + \frac{I_F}{I_R})$$

SCHOOL OF MICROELECTRONICS

Examples (qualitative)

- Larger N_T (trap center concentration),e.g, doping Au in Si \rightarrow Smaller minority lifetime (τ_p or τ_n) \rightarrow smaller t_s
 - Larger N_T →increase $I_{G-R}(I_0)$ → for sub ns on/off speed field: BJT or MOS
- smaller I_F /I_R → smaller t_s
- Stepped Recovery Diode with extreme steep junction: p-i-n diode (t_s ~1us, t_r~1ns)
 - A narrow and light doped semi insert between high doped semi
 - Application:Pulse generator.

SCHOOL OF MICROELECTRONICS

SCHOOL OF MICROELECTRONICS

Summary

- When a pn junction is switched from forward bias to reverse bias, the stored excess minority carrier charge must be removed from the junction.
- The time required to remove this charge is called the storage time and is a limiting factor in the switching speed of a diode.

微电子学院

