

Introduction to CMOS RF Integrated Circuits Design

V. Voltage Controlled Oscillators

Outline Outline

Phase Noise and Spurs ◆**Ring VCO** ◆LC VCO **Frequency Tuning (Varactor, SCA) Phase Noise Estimation Quadrature Phase Generator**

VCO Phase Noise VCO Phase Noise

Phase Noise Requirement Phase Noise Requirement

$$
SNR = S_{desired} - S_{noise}
$$

= S_{desired} - [S_{block} + L{ $\Delta \omega$ } + 10log(f_{ch})]
:. L{ $\Delta \omega$ } < S_{desired} - S_{block} - SNR_{min} - 10log(f_{ch})
Ex: GSM
S_{desired} = -102dB; S_{block} = -23dB @600KHz
SNR_{min} = 9dB; f_{ch} = 200KHz
:. L{ $\Delta \omega$ } < -102+23-9-10log(200K)
< -141dBc / Hz @600KHz

Spurious Spurious -Tone Performance Tone Performance

Introduction to CMOS RF Integrated Circuits Design Fall 2012, Prof. JianJun Zhou **V-5**

Spurious Spurious -Tone Requirement Tone Requirement

$$
SNR = S_{desired} - S_{noise}
$$

= S_{desired} - (S_{block} + S_{spur})
:. S_{spur} < S_{desired} - S_{block} - SNR_{min}
Ex: GSM
S_{desired} = -102dB; S_{block} = -23dB @600KHz
SNR_{min} = 9dB;
:. S_{spur} < -102+23-9 = -88dBc

Typical Figure of Merits for VCO

Frequency $\sim 1 - 5$ GHz Tuning Range $\sim 10-20\%$ Supply Voltage ~ 1.5 V $Current < 10 mA$

-
-
- Phase Noise -105 dBc/Hz ω 100 KHz
	-
	-

Oscillation Theory Oscillation Theory

$$
\frac{Y(s)}{X(s)} = \frac{H(s)}{1 - H(s)G(s)}
$$

For steady oscillation, Barkhausen's criteria must be simultaneously met: $H(s)G(s) \geq 1$ $\angle H(s) + \angle G(s)$ $= 2n\pi$

Introduction to CMOS RF Integrated Circuits Design Fall 2012, Prof. JianJun Zhou **V-8**

Negative Resistance Model Negative Resistance Model

During Oscillation:

$$
\mathrm{Re}[Z_{a}(s)] + \mathrm{Re}[Z_{r}(s)] = 0
$$

Negative Resistance Model Negative Resistance Model

1 *GmVβ V*2*V*2*GoZino inm in GZGZA*1*G ^A β ZGGβ ZYoinomin* 111 Im ¹ 0Im0*Aβ Y*Determine the oscillation frequency *A*

Oscillation:

$$
A\beta > 1 \Leftrightarrow \text{Re}\left[\left(\frac{1}{Z_{in}} + G_o\right)\left(1 - A\beta\right)\right] < 0
$$

Negative Conductance

Introduction to CMOS RF Integrated Circuits Design Fall 2012, Prof. JianJun Zhou **V-10**

 \equiv

Negative Resistance Model Negative Resistance Model

Ring vs LC Oscillators LC Oscillators

Ring VCO Ring VCO

- A Cascade of Delay Cells Connected in Feedback to Meet Oscillation Criteria (Barkhausen)
	- Loop Gain $@w_{osc} > 1$
	- **Total Phase Shift** $\omega w_{osc} = 2n \pi$
- For Single-Ended Design, Needs An Odd Number of Delay Cells to provide 2n π phase shift

$$
f_{osc} = \frac{1}{2N\tau_d}
$$

Implementation of Ring Oscillator Implementation of Ring Oscillator

Introduction to CMOS RF Integrated Circuits Design Fall 2012, Prof. JianJun Zhou **V-14**

Ring VCO Ring VCO

- E Delay Cells Can Simply Be Digital or Analog Inverters
- \blacksquare Delay and Frequency Can Be Tuned By Bias Current, Device Transconductance, or Loading Resistance or Capacitance
- Can Provide Rail-To-Rail Output Waveform and Wide Tuning Range
- All Components Contribute Phase Noise

Delay Cells Delay Cells

Ring VCO Ring VCO –Differential Design Differential Design

- **Signal is Increased by 6 dB while Noise is Increased by 3** $dB \Rightarrow Phase Noise$ is Improved by 3 dB
- \blacksquare Common-Mode Rejection (Supply, Even-Order Harmonics, Common-Mode, Substrate Noise)
- \blacksquare Double Power, Double Chip Area

LC VCO $-$ Single-Ended Design

- Use Feedback Principle for Oscillation:
	- Loop Gain $@w_{osc} > 1$
	- **Total Phase Shift** $\omega w_{osc} = 2n \pi$
- Critical to Include Impedance Transform:
	- Not to Degrade Tank Q
	- **Improve Gain for Oscillation**
- Either Capacitive or Inductive Divider Can Be Used for Impedance Transformation

LC VCO $-$ Single-Ended Design

Feedback can be from drain to source or gate to source

LC VCO $-$ Single-Ended Design

LC VCO -Single -Ended Design Ended Design

LC VCO Negative Resistance Design Negative Resistance Design

- \blacksquare Make Use of LC Resonant Tank
- \blacksquare Use Negative-Gm Compensation Technique to Achieve Infinite Q for Oscillation

Negative Resistance Negative Resistance

Negative Resistance Negative Resistance

$$
i_x = i_{d2} = -i_{d1} \qquad v_x = V_{gs2} - v_{gs1}
$$

$$
i_x = -G_m v_x = -\frac{g_m}{2} v_x
$$

At high-frequency the device capacitance and input resistance should be included in the analysis.

Differential VCO Differential VCO

Differential Differential VCOs

Introduction to CMOS RF Integrated Circuits Design Fall 2012, Prof. JianJun Zhou **V-26**

LC VCO Frequency Tuning Frequency Tuning

$$
f_{\scriptscriptstyle osc} = \frac{1}{2\pi\sqrt{LC}}
$$

- **Firequency Tuning Can Be Achieved By Tuning** Capacitance Using a Varactor or a Switchable Capacitor Array (SCA)
- Or Effective Inductance

PN -Junction Varactor Junction Varactor

PN -Junction Varactor Junction Varactor

PN-Junction Varactor Junction Varactor

- Make Use of Depletion Capacitance of p-n Diode Junction
- \blacksquare n+ Contacts Are Used to Minimize Contact Resistance and thus to Maximize Q
- Reducing Size of p + Would Minimize p + Series Resistance
- Increasing Size of p+ Would Increase Number of Contacts and Reduce Contact Resistance
- \blacksquare Measurements Indicate Contact Resistance Dominates \Rightarrow Larger Size of p+ Diffusion is Desired for Higher Q

Accumulation Accumulation-Mode Varactor Mode Varactor

Accumulation Accumulation-Mode Varactor Mode Varactor

Accumulation Accumulation-Mode Varactor Mode Varactor

- Similar to NMOS with N-Well Instead of P-Substrate
- \blacksquare n+ Are Used to Minimize Parasitic p-n Junction Capacitance to Maximize Tuning
- For Gate Voltage Larger Than Flat-Band Voltage V_{FB} => Accumulate => $C_T = C_{ox}$
- For Smaller Gate Voltage, Depletion Capacitance C_{dep}
Exists Between Oxide and N-Well => $1/C_T = 1/C_{av} + 1/C_T$ $C_T = 1/C_{ox} + 1/C_{dep}$
- Compared to p-n Junction Capacitance, Advantages of Accumulation-Mode Capacitance Include [Soorapanth]:
	- Better Average Q
	- **Larger Tuning Capacitance**

Switchable Switchable -Capacitance Array Capacitance Array

Larger Tuning Range

Introduction to CMOS RF Integrated Circuits Design Fall 2012, Prof. JianJun Zhou **V-35**

Switchable Switchable -Capacitance Array Capacitance Array

Switchable Switchable -Capacitance Array Capacitance Array

- Wide Tuning Range Can Be Achieved By Increasing Number of Bits in the Array
- **Large Switch** \Rightarrow **Small Turn-On Resistance** \Rightarrow **High Q**
- Large Switch \Rightarrow Large Parasitic Capacitance \Rightarrow Small Tuning Range and Limited Operating Frequency

Phase Noise Estimation Phase Noise Estimation

Phase Noise Estimation Phase Noise Estimation-Leeson's Model

- Use Impulse Sensitivity Function (ISF) $G(x)$ which is a Periodic Function of Phase Shift for A Unit Impulse Applied at Time $t = x$
- Phase Noise is Maximum when Noise Current Impulses are Injected at Zero-Crossing Point
- Phase Noise is Minimum when Noise Current Impulses are Injected at Output Peaks

$$
L(\Delta \omega) = \frac{\Gamma_{\rm rms}^2}{q_{\rm max}^2} \cdot \frac{\overline{i^2} / \Delta f}{2(\Delta \omega)^2}
$$

$$
L(\Delta \omega) = \frac{c_0^2}{q_{\text{max}}^2} \cdot \frac{i_{\text{n}}^2 / \Delta f}{8(\Delta \omega)^2} \cdot \frac{\omega_{1/f}}{\Delta \omega}
$$

Introduction to CMOS RF Integrated Circuits Design Fall 2012, Prof. JianJun Zhou **V-43**

Phase Noise in the VCO Phase Noise in the VCO

We see that all noise a distance ω around all the harmonics, including DC, contributes to the phase noise. DC 1/f noise contributes to the 1/f 3 region.

Optimization of Phase Noise in the LC VCO

- •Evaluate the optimization gate length of the active device •Calculate minimize spectral density of each oscillator noise source by using the optimization gate length of the active device.
- •Derive the impulse sensitivity function of each oscillator source after the transient simulation is done when a current noise is injected at the node of the oscillator circuit (Cadence SpectreRF).
- •Combine above results to obtain for each oscillator noise source.
- •Calculate Fourier Series Coefficient for each ISF
- •Calculate the overall output phase noise using the results from above step.

Quadrature Phase Generator Quadrature Phase Generator

•Divide-by-2 •Quadrature VCO •Poly phase shifter (RC-CR network)

