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Challenges in RF IC DesignChallenges in RF IC Design

 RF IC Designs = Device Models + Simulators + 
Experience

 RF IC Designer = 
Analogue circuit designer (Simulation) + 
Component maker (layouts) +System designer
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High-cost design:
•Manpower
•EDA tool
•Measurement systems
•Test chips (3~5 rounds)

Layout Design
and DRC / LVS, parasitic extraction

Circuit Design

Target System Spec

RF System Design

(Wafer Process)

(Assembly Process)

Evaluation

Device Model

PCB Design
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Mass Production Transfer
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General Design ConsiderationsGeneral Design Considerations

Low CostsMulti-functions
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RF IC Design

Device Physics

Wireless Standard

Transceiver
Architectures Distributed 

Parameters

Microwave
Theory

Comm. Theory

EMC/EMI

IC Design

CAD Tools

Analog Circuit

Semiconductor 
Processes

Material Packaging

Analog/RF IC
Designer

Device Physics
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Transceiver
Architectures Distributed 

Parameters

Microwave
Theory

Comm. Theory

EMC/EMI

IC Design

CAD Tools

Analog Circuit

Semiconductor 
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Teamwork RequiredTeamwork Required

RF Circuit Layout/Parasitic extraction

RF System/Circuit
Design

Digital Design
Wireless System
Spec / Evaluation

Design Rule /
CAD / Library

Device Model

Packaging

CustomerGlobal 
Standard

RF Circuit Layout/Parasitic extraction

RF System/Circuit
Design

Digital Design
Wireless System
Spec / Evaluation

Design Rule /
CAD / Library

Device Model

Packaging

CustomerGlobal 
Standard

Foundry
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High-frequency

High-Gain

High-linearity Wide-dynamic 
range

Low-Voltage

Low-Noise Low-Power
Consumption

Wide-band

TradeTrade--OffsOffs
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MultiMulti--Mode WirelessMode Wireless

Future receivers need “Co-exist” with transmitters of different standards. 
(i.e. simultaneous operation SoC/SiP)
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(Super(Super--)) Heterodyne ReceiverHeterodyne Receiver

Out-of-band rejection

Image problem
(1st down-conversion)

1st channel selection
(2nd down-conversion)

*Razavi

2nd channel selection

BPF1

BPF2

BPF3

BPF4

LO1
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OutOut--ofof--band Interference Rejection (band Interference Rejection (BBand and SSelection)election)

Out-of-band In-band Out-of-band
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Image Image PProblem in roblem in HHeterodyne eterodyne SSystemystem
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Image Image RRejection by ejection by FFilterilter
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Channel Channel SSelection election FFilterilter
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High Q Filter

High Q Filter

IImage mage RRejection and ejection and CChannel hannel SSelectionelection



Introduction to CMOS RF Integrated Circuits Design
Fall 2012, Prof. JianJun Zhou II-20

InIn--band Interference (1)band Interference (1)
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InIn--band Interference (2)band Interference (2)

Near-Far Problem Comes from Wandering into Adjacent Cells
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InIn--band Interference (3)band Interference (3)

How does Non-linear Amplifier (IMD3) affect the signal?
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ReceiverReceiver : : HeterodyneHeterodyne

 Advantages
 (High Selectivity) Relaxation of linearity requirements due to the use of IF SAW BPF
 (High Sensitivity) Less DC-offset impairment, Easier I/Q match at lower frequencies

 Disadvantages
 Bulky off-chip RF/IF SAW BPFs
 A good frequency plan is essential 
 Image problem
 “Half-IF” spurious response at lower IF frequencies
 Need at least two LO sources
 Integration level is low due to filter
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Receiver : DirectReceiver : Direct--Conversion (ZeroConversion (Zero--IF)IF)

 Advantages
 No Image or “half-IF” issues
 High level integration and lower cost (No IF filters)

 Disadvantages
 DC offset problems are extremely challenging (IM2/IP2)
 LO leakage re-radiation (LO pulling)
 1/f noise (CMOS) can substantially corrupt the D/C signal
 Even-order distortion of great concert
 More difficult I/Q match at RF frequencies
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DC offsetDC offset
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ReceiverReceiver : Low: Low--IFIF

 Advantages
 Integration of channel filters is possible
 Less susceptible to 1/f noise and DC offsets (AC coupling)
 Low-frequency IM2 product can be easily blocked.

 Disadvantages
 Image is still a problem, which entails precise I/Q match
 Complex signal processing is essential to obtain necessary 

selectivity
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Receiver: Image Rejection LowReceiver: Image Rejection Low--IFIF

 To achieve 30dB Image rejection
 IQ amplitude imbalance is less than 0.5dB
 IQ phase imbalance is less than 3.5 degree
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Receiver: Image Rejection LowReceiver: Image Rejection Low--IF (Digital)IF (Digital)

 Advantages
 Digital signal process avoids the problem of I/Q mismatch\
 Less susceptible to process variations

 Disadvantages
 ADC performance is a great concern
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ZeroZero--IF Receiver Channel SelectionIF Receiver Channel Selection

IP3
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TransmitterTransmitter : Heterodyne: Heterodyne
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Transmitter: Direct ConversionTransmitter: Direct Conversion
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No interference No interference 
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With Interference (LO With Interference (LO PPulling)ulling)
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Indirect VCO FrequencyIndirect VCO Frequency (Sub(Sub--harmonic LO)harmonic LO)

*APMC2006

- Or using sub-harmonic modulator or mixer
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Duplexer Freq. ResponseDuplexer Freq. Response
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PA Leakage to RxPA Leakage to Rx

935-960 MHz

890-915 MHz, FDD TRx

TDD TRx

Rx

Tx
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Desensitization Through CompressionDesensitization Through Compression
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TRxTRx Architecture SelectionArchitecture Selection
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EMIFrequency 

stability

IM Rejection
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Selectivity

Spurious 
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SensitivitySensitivity

 RF Receiver sensitivity: quantifies the ability 
to respond to a weak signal. 

 Defined as the minimum detectable signal 
power level, satisfying the requirement of the 
specified signal-to-noise ratio (SNR) for an 
analog receiver and bit-error-rate (BER) for a 
digital receiver.
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dBmdBm

dBm 10 log (mW)=10log(W) 30dB 

Boltzmann constant k = 1.3806503 × 10-23 JK-1

Room temp=300K

23kT 1.38 10 = 173.83 /300W/Hz dBm Hz  
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Receiver Thermal Noise

Receiver Added Noise

Desired Signal

,min min

min

(dBm) (dBm) (dB) (dB)
174 / 10logB

receiverin

receiver

Sensitvity P kTB F SNR
dBm Hz F SNR

   

    

 (dBm) (dBm) (dB)nf receiverNoise Floor P kTB F  

EquationsEquations
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Desired RF 
band

Band selectivity

f

Wanted 
Channel

Channel selectivity

Desired RF Band

The ability to reject unwanted signals on adjacent 
channels (channel selectivity) and/or the outside of the 
wanted band (band selectivity). 70 to 90 dB rejections are 
normally required

SelectivitySelectivity
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The ability to reject undesired channels to reduce the 
interference. Rejection of 70dB to 100 dB is usually 
required for wireless communications;

Intermodulation (IM) RejectionIntermodulation (IM) Rejection

The receiver has the tendency to generate its own on-channel 
interference from one or more RF signals due to the 
nonlinearity of the receiver. These interference signals are 
called IM products. Greater than 70 dB rejection is 
desirable

Spurious Response RejectionSpurious Response Rejection

Spurs and Intermodulation Spurs and Intermodulation 
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Stable frequency operation is important in order to capture the 
desired frequency channel. PLL/synthesizers are 
commonly employed to obtain an accurately controlled LO 
frequency.

EMI: Electromagnetic InterferenceEMI: Electromagnetic Interference

From one part to another part within an RF front-end receiver or 
from interconnects as well as the silicon substrates

Frequency StabilityFrequency Stability

OthersOthers
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Noise FigureNoise Figure

 Signal-to-noise ratio (SNR): ratio of the signal power to 
the total noise power

 Noise figure is a figure of merit quantitatively specifying 
how noisy a system/component is. The noise factor F is 
defined for the two-port network:

NF=10log(F)  (dB)

power noise unwanted
power signal wantedSNR 

oo

ii
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NSF

/
/

|SNR
|SNR

putout 

putin 
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F1
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Si So

Ni No
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Friis equation:

NF contribution

Cascaded Noise FigureCascaded Noise Figure
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Dynamic RangeDynamic Range

 For an RF system, operation is normally in a region 
where the output power is linearly proportional to the 
input power, while the coefficient is the desired power 
gain. This region is called as the dynamic range (DR). 

 DR is the rang between the maximum power level that 
the system is still in linear region to the minimum 
detectable signal (MDS) power level
 The range could be specified in terms of input power or output 

power. 
 Higher DR is desirable

(dB)   outin GPP 



Introduction to CMOS RF Integrated Circuits Design
Fall 2012, Prof. JianJun Zhou II-51

Nonlinear EffectsNonlinear Effects

y(t) is the output and x(t) is the input signal. ao is the DC component, 
a1 the gain, a2 and a3 (less than zero) the coefficients of the second 
and third-order nonlinear terms. 

)()()()( 3
3

2
21 txatxatxaaty o 

It is desired that no matter how high the input signal power is,
the output power will be the linearly amplified input signal. 
Nonlinearities often exist in practical systems and lead to interesting 
phenomena, those phenomena limit the linear operating range of a
system. For simplicity, the output – input relationship can be 
approximately modelled as (Taylor Series expansion):
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- dB 

DR 

Linear  relationship

Gain-compression of a realistic RF system

Pin,1-dB = Pout,1-dB –G +1 dB DR = Pin,1dB – MDS      (dB)

11--dB Compression PointdB Compression Point
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11--dB Compression Point: EquationsdB Compression Point: Equations
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11--dB CP dB CP 

If 0 is the desired signal then the gain will be , a decreasing gain
because of a3<0. If the unwanted signal strengths A1 and A2
are so strong, the gain of the wanted signal drops to 1 or 
lower when:

Now the wanted signal is “blocked” by the unwanted strong 
signal, because the wanted signal cannot be amplified by the 
RF section. Many RF sections in wireless applications must be 
able to withstand blocking signals 60 to 70 dB stronger than 
the wanted signal 

2 2 21
1 2 0

3

12 1
3 | | 2

aA A A
a
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The 1-dB compression point can be obtained from three-tone for the 
wanted channel as (assuming 3 input tones are at the same power):

Or

Thus, from the measured linear gain a1 and the input level at the 1-
dB compression point, one can calculate the nonlinear coefficient 
|a3|

1dB CP 1dB CP vsvs a3a3

3
1 1 1 1 3 1

1520log( ) 20log( | | ) 1 (dB)
4dB dB dBa A a A a A    

1 1
3 12

1 3

| | 0.029 or 0.029
| |dB

dB

a aa A
A a
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IntermodulationIntermodulation

Intermodulation or intermodulation distortion 
(IMD), or intermod for short, is the result of two or 
more signals of different frequencies being mixed 
together, forming additional signals at 
frequencies that are not, in general, at harmonic 
frequencies (integer multiples) of either.

Intermodulation should not be confused with 
general harmonic distortion. Intermodulation 
specifically creates non-harmonic tones ("off-
key" notes, in the audio case) due to unwanted 
mixing of closely spaced frequencies.
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IMD in a 3IMD in a 3--Tone CaseTone Case

0- 0+
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There are IM effects between any two channels
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Intercept Point (IP)Intercept Point (IP)

The intercept point is obtained graphically by plotting the 
output power versus the input power both on logarithmic 
scales (e.g., dB). Two curves are drawn; one for the linearly 
amplified signal at an input tone frequency, one for a nonlinear
product. On a logarithmic scale, the function xn translates into 
a straight line with slope of n. Therefore, the linearly amplified 
signal will exhibit a slope of 1. A third-order nonlinear product 
will increase by 3 dB in power when the input power is raised 
by 1 dB. 

The intercept point is a purely mathematical concept, and 
does not correspond to a practically occurring physical power 
level. In many cases, it lies beyond the damage threshold of 
the device. 
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Nonlinear Effects of Cascaded RF SystemsNonlinear Effects of Cascaded RF Systems
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TradeTrade--off between NF & IP3off between NF & IP3
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SpuriousSpurious--Free Dynamic RangeFree Dynamic Range
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The maximum input level for which the IM products become 
Equal to the noise floor:

E.g. if a receiver with NF=9dB, PIIP3=-15dBm, and B=200kHz 
SNRmin=12dB, then, SFDR53dB.
The SFDR represents the maximum relative level of interferers 
that a receiver can tolerate while producing an acceptable signal 
quality from a small input level.

2
outIM,out

in3
PP

PPIIP



3

2 IM,in3
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PP
P IIP 



BNFFFPP IIP log10dBm174,
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Total System IIP3Total System IIP3

(mW))1111(3 1

321


NIPIPIPIP

IIP 

Transfer all input intercept points to system input, subtracting gains 
and adding losses decibel for decibel
Convert intercept points to powers (dBm to mW). We have IP1, 
IP2, …. IPN for N elements
Assuming all input intercepts points are independent and 
uncorrelated, add powers in “parallel”:
Convert IIP3 from power (mW) to dBm.


