

Introduction to CMOS RF Integrated Circuits

Final Project

TA:李哲 Email: justinian@sjtu.edu.cn or lizhe@ic.sjtu.edu.cn

Submission Guidelines:

- 1. You can work as teams. Each team contains no more than five people.
- 2. Submit your report on Oct. 29. The presentation will be on Nov. 1.
- 3. Attached along with this instruction is the report template. Follow the given format. Your submission should include:
 - [1]. Title, Abastract, Index, Author
 - [2]. Introduction: why this work is worth designing, application background, etc.;
 - [3]. Spec: how to determine the specs (if you choose a CARFIC project you are currently working on)
 - [4]. Architecture: how to determine the topology
 - [5]. Design approach
 - [6]. Design calculations
 - [7]. Complete circuit schematic with device dimensions, passive component values and testbench with simulation condition.
 - [8]. Simulation results: tables and plots
 - [9]. Discussions/conclusions: what you have done
 - [10]. References
- 4. Your submission should be in English;
- 5. Print/Write your submission in A4 paper with your name and student ID on the cover page.
- 6. Do not forget to staple your pages together.

Project Description:

- 1. Choose one topic from the given projects. Design a circuit satisfying the corresponding specs INDEPENDENTLY.
- 2. You are encouraged to use novel topology from papers. Try to optimize some specific parameters such as power dissipation, NF, IIP3 etc. A better circuit performance will earn you a higher score.
- 3. You could also choose the circuit you are currently busy with for CARFIC projects. Note that if you choose the CARFIC you are working on, a complete background information including what your job is, how the specs are determined, etc. should be clearly described in "Introduction" of your submission.
- 4. Tool: Cadence SpectreRF
- 5. PDK: TSMC0.18 RF CMOS

6. Presentation

- a) Presentation will be held on Nov. 1, 2012
- b) Prepare slides for your presentation in English
- c) Your presentation should be within 10 minutes
- d) Try your best to make your presentation easily understood.
- 7. Grading: 50% by TA and Professor Jianjun Zhou and 50% by peer review.

Project Topics:

Project 1 Wideband LNA design

Specs

Parameter	Comments	Min	Nom	Max	Units
Supply voltage		1.8	2.0	2.2	V
Supply current			6	8	mA
RF frequency			470-870		MHz
S11, S22			<-10		dB
S12			<-10		dB
S21			>15		dB
NF			<3.5		dB
IIP3@652MHz&668MHz			>5		dBm

Project 2 Narrowband LNA design

Specs

Parameter	Comments	Min	Nom	Max	Units
Supply voltage		1.8	2.0	2.2	V
Supply current			6	8	mA
RF frequency			1.575		GHz
S11, S22			<-10		dB
S12			<-20		dB
S21			>15		dB
NF			<3		dB

IIP3@1.575GHz&1.580GHz >-20 dBm

Project 3 Active Mixer

Specs

Parameter	Comments	Min	Nom	Max	Units
Supply voltage			1.8		V
Supply current			5	<8	mA
RF frequency			1.57542G		Hz
RF bandwidth			2.046M		Hz
LO frequency			1.569G		Hz
Gain		>12	15		dB
Gain variation@ RF BW			0.8		dB
NF			12	<15	dB
IIP3@gain=15		-10	-8		dBm