
828 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 57, NO. 10, OCTOBER 2010

Computational Complexity Analysis of
Determinant Decision Diagram

Guoyong Shi, Member, IEEE

Abstract—A determinant decision diagram (DDD) uses a binary
decision diagram (BDD) to calculate a determinant symbolically,
which is then applied for symbolic circuit analysis. The efficiency
of such a technique is determined mainly by a symbol ordering
scheme. Finding an optimal symbol order is an non-deterministic
polynomial-time hard problem in the practice of BDD. So far, it is
unknown what an optimal order is for a general sparse matrix.
This brief shows that a row-wise (or column-wise) order is an
optimal BDD order for full matrices in the sense that the DDD
graph constructed has the minimum number of vertices (i.e., the
DDD size). The optimal DDD size is proven to be (n · 2n−1) for an
n × n full matrix. This size provides a DDD complexity measure
that has rarely been investigated in the literature.

Index Terms—Binary decision diagram, computational com-
plexity, determinant decision diagram, symbolic circuit analysis.

I. INTRODUCTION

SYMBOLIC circuit analysis derives analytically the charac-
terizations of a circuit in terms of the circuit parameters.

Design tools with such symbolic characterization are consid-
ered helpful for analog design automation. For example, the
sensitivity of a design metric (e.g., the dc gain or the unity-gain
frequency) with respect to a device parameter can be calculated
analytically for design decision making [1].

All symbolic analysis tools proposed so far run into the
curse of exponential complexity in one way or another. This
difficulty had existed for many decades until the proposal of the
determinant decision diagram (DDD) approach [2], which ef-
fectively tapered the exponential complexity growth to a much
milder level. The key mechanism that achieves the complexity
attenuation is the enforcement of substructure sharing as in all
binary decision diagrams (BDDs) [3]. In the context of DDD,
the shared substructures are the minors of different dimensions.
Many applications and extensions of DDD have appeared in the
literature [4]–[7] and most recently in [8].

A symbolic analysis technique with a lower complexity
means a higher capacity for analyzing larger circuits. Since the
DDD technique is inherently exponential as well, a sensible
question to ask is how low the exponential complexity can be
for a set of problems. Here, the complexity mainly refers to the
memory required for storing a full DDD, which in general is
proportional to the time required for constructing such a DDD.

Manuscript received March 29, 2010; revised June 3, 2010; accepted
July 14, 2010. Date of publication September 16, 2010; date of current version
October 15, 2010. This research was supported by the National Natural Science
Foundation of China (Grant No. 60876089). This paper was recommended by
Associate Editor P. Li.

The author is with the School of Microelectronics, Shanghai Jiao Tong
University, Shanghai 200240, China (e-mail: shiguoyong@ic.sjtu.edu.cn).

Digital Object Identifier 10.1109/TCSII.2010.2067791

A natural complexity measure is by the number of vertices
created for a DDD (known as the DDD size and denoted by
|DDD|).

A matrix without any zero element is called a full matrix.
Since a full matrix is the most regular, a discussion on the
DDD complexity for such a class of matrices is tractable. It is
proven in this brief that a row-based or column-based symbol
ordering can produce a minimal DDD for any full matrix, and
the minimum DDD size is (n · 2n−1) for an n × n full matrix.

The complexity number (n · 2n−1) reveals that the DDD
complexity grows exponentially with an asymptotic growth rate
of two by using an optimum order. We know that a direct
enumeration of the determinant of a n × n full matrix would
produce Tn := n! product terms, whose growth rate is by n,
without counting the growing length of each term. Therefore,
a large degree of complexity compression can be achieved by
using a DDD.

Any n × n sparse matrix is a special case of an n × n full
matrix by setting a portion of the elements to zero. While
the DDD size for a full matrix can be greatly different from
that for a sparse matrix of the same dimension, one may
devise a problem-specific symbol ordering scheme to achieve
a surprising complexity reduction for DDD construction.

A discussion on the DDD optimality must be based on a
DDD with canonicity. It is justified in Section II that the row
and column indexes of a minor are sufficient for identifying
a minor sharing (i.e., minor hashing). The optimality results
on the symbol order and the DDD size for full matrices are
established in Section III with the help of a layered expansion
directed graph (digraph). A discussion is given in Section IV,
where the complexity of row (or column) ordering is compared
to the existing Greedy-Labeling scheme proposed in [2]. A
conclusion is made in Section V.

II. CANONICITY BY MINOR HASHING

The Laplace expansion of a determinant det A along the ith
row can be written as

det A =
n∑

j=1

(−1)i+jai,jMi,j (1)

where ai,j is the element of matrix A at the ith row and the
jth column, and Mi,j denotes the minor of matrix A after its
ith row and jth column are deleted. Since each Mi,j is again a
determinant of reduced dimension, it can be expanded further
by a selected row or column. In general, the expansion does not
have to follow a row or a column.

1549-7747/$26.00 © 2010 IEEE

SHI: COMPUTATIONAL COMPLEXITY ANALYSIS OF DETERMINANT DECISION DIAGRAM 829

By defining two basic operations “Minor” and “Remainder”
[2], any determinant can be expanded according to any selected
order of the nonzero elements (called the symbol order in
DDD). Specifically, given any minor, the “Minor” operation on
an element xi,j existing in the minor refers to the operation
of deleting the ith row and the jth column from the minor,
while the “Remainder” operation on an element xi,j refers to
setting the element xi,j to zero. Clearly, the “Minor” operation
reduces the dimension of the minor under operation by one,
while the “Remainder” operation does not change the dimen-
sion of the minor.

Basically, the expansion of a determinant can be expressed
by a sequence of the binary operations according to a prese-
lected order of the nonzero elements. During the expansion, the
intermediate minors produced by the “Minor” and “Remainder”
operations are preserved in the memory for the succeeding
operations.

The main contribution of the original DDD work [2] is to
model the sequence of binary operations using a BDD [3],
with which all the identical intermediate minors are shared
(the so-called canonicity in BDD parlance). In [2], the sharing
was implemented by invoking the routines offered by a zero-
suppressed binary decision diagram (ZBDD) package [9].

In a DDD, each vertex is associated with a symbol and a
minor generated by the preceding operations. For example, the
root vertex is associated with the first symbol and a minor,
which is the original determinant. At each nonterminal vertex,
one of the operations, “Minor” or “Remainder,” is applied to
the associated minor by selecting one nonzero element out of
the minor according to a given symbol order. Note that multiple
vertices of the same symbol name could exist in one DDD
because such vertices are associated with different minors.

Proposition 1: Given a symbol order for a determinant to be
expanded in a DDD. If in the middle of DDD construction, two
minors associated with two DDD vertices of the same symbol
name have identical row and column indexes, then the two
minors must be identical, i.e., their elements coincide exactly.

It is important to note that during the DDD construction,
there exist minors of the same row and column indexes but
different minor entries because the “Remainder” operations
could have set some nonzero entries to zero. Therefore, this
proposition is not self-evident.

Proof: The proof is based on a given symbol order. With-
out loss of generality, we consider the two 3 × 3 minors M1

and M2

M1 =

∣∣∣∣∣∣

× α ×
β × ×
× 0 0

∣∣∣∣∣∣
, M2 =

∣∣∣∣∣∣

× 0 ×
β × ×
× 0 0

∣∣∣∣∣∣
, (2)

where α, β, and × indicate the nonzero elements remaining.
Suppose the two minors have identical row and column indexes
and are associated to two DDD vertices of the same symbol ‘β’
being processed. If the two minors have at least one element
(symbol) different, for instance, symbol ‘α,’ which exists in
minor M1 but not in minor M2 [see (2)], then a simple argument
leads to a contradiction. The vanished α in minor M2 indicates
that the symbol α must precede symbol β. However, the symbol

α still existing in the minor M1 indicates that symbol β
precedes symbol α, which is contradictory. �

Proposition 1 plays the key role in designing a minor sharing
mechanism for DDD construction. It suffices to maintain a
minor hash table to store only the minor row and column
indexes. When creating a DDD vertex as the result of a “Minor”
or “Remainder” operation, look up the minor hash table to see
whether another DDD vertex has a minor with the identical row
and column indexes. If yes, the existing DDD vertex is shared.
This minor sharing mechanism ensures the DDD canonicity by
construction. In contrast, the authors of [2] used a ZBDD pack-
age for DDD construction, and introduced a minor cache table
for efficiency. However, the overall efficiency could be jeopar-
dized by cache collisions because some minors expanded be-
fore might have to be reexpanded later. Moreover, a final DDD
reduction phase must be performed to maintain canonicity.

III. RESULTS ON OPTIMALITY

A discussion on the optimal DDD size need not only the
canonicity of a DDD, but also a regular organization of a DDD.

Recall that a “Minor” operation reduces the minor under
operation by one dimension, but the “Remainder” operation
keeps the dimension of the minor unchanged. An n × n minor
is reduced successively to a scalar (1 × 1) minor after applying
(n − 1) “Minor” operations in addition to a number of “Re-
mainder” operations in the middle. For an easy derivation of the
DDD size, we convert a DDD in one-to-one correspondence to
a new graph called layered expansion digraph.

Since the “Remainder” operations produce minors of the
same dimension, we place all the DDD vertices created by the
“Remainder” operations in the same layer. Since the “Minor”
operations reduce the minor dimensions by one, we place all
the DDD vertices created by the “Minor” operations in the
succeeding layers.

Take the 3 × 3 full determinant
∣∣∣∣∣∣

a(1) b(2) c(3)

d(4) e(5) f (6)

g(7) h(8) i(9)

∣∣∣∣∣∣
(3)

for an example, where the numbers in the superscripts indicate
the order of the symbol in the ordered symbol list. For instance,
a(1) means that the symbol a is the first element to be expanded.
The order given in (3) is a row-wise order.

The DDD created for the 3 × 3 determinant with the given
order is shown in Fig. 1(a), where the DDD vertices associated
with the minors of the same dimension are placed in the same
row (called layer). The horizontally drawn arrows are all dashed
in the figure; they correspond to the “Remainder” operations.
The solid arrows connecting vertices in the neighboring layers
correspond to the “Minor” operations.

For an n × n determinant in general, after n layers of expan-
sion, the first layer consists of all DDD vertices associated with
n × n minors, the second layer consists of all DDD vertices
associated with (n − 1) × (n − 1) minors, and so on. The
bottom layer consists of all DDD vertices associated with 1 ×
1 minors (i.e., scalars).

830 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 57, NO. 10, OCTOBER 2010

Fig. 1. (a) DDD for the 3 × 3 full matrix. (b) Corresponding layered
expansion digraph.

In the middle of DDD construction, some expansions should
be terminated because the newly generated minors become
singular. The singularity test is implementation-specific. It is
not discussed further in this brief.

By definition, a one-path (or term-path) refers to a path in
a DDD graph that starts from the DDD root and ends at the
terminal vertex one. Along any path, all vertices lying at the
tails of the solid arrows form a product term of the original
determinant [2]. Since the dashed arrows are not significant
for identifying a product term, we decide to convert a DDD
to another form of digraph in which the term-paths are more
easily identified.

Note that the vertices successively connected by the dashed
arrows [e.g., vertices e and f in the second layer of Fig. 1(a)]
are to be multiplied by the same vertex in the preceding layer
[vertex a in Fig. 1(a)], which has a solid arrow connecting to the
leading vertex [vertex e in Fig. 1(a)] of the successively dash-
connected vertices. In the converted digraph, solid arrows are
added explicitly to manifest the multiplications. For instance,
a solid arrow is added to connect vertex a to vertex f in the
converted digraph. Shown in Fig. 1(b) is the layered digraph
converted from the DDD given in Fig. 1(a), where all the dashed
arrows have been removed and some solid arrows have been
added. It is clearly seen that all the paths from the vertices in
the top layer to the vertices in the bottom layer produce all the
product terms of the determinant. The six paths in Fig. 1(b) rep-
resent the six product terms of the 3 × 3 full determinant in (3).

The converted layered digraph is instrumental to the develop-
ment of an optimality argument. We shall use the two features
that come with a layered digraph. First, regardless of the symbol
order, the number of paths (i.e., terms) in any digraph for a
given determinant is invariant. Second, the number of vertices
in a digraph is equal to the size of the DDD from which the
digraph is converted. In this brief, the DDD size (i.e., |DDD|)
refers to the number of vertices in a DDD excluding the two
terminal vertices ‘one’ and ‘zero.’

Let C(n, k) denote the so-called n choose k function in
combinatorics, i.e., C(n, k) = n!/(k!(n − k)!).

Theorem 1: By a row-wise (or column-wise) order, the DDD
size of an n × n full matrix is (n · 2n−1).

Proof: Without loss of generality, we prove the theorem
for a natural row-wise order going from the first row (left to
right) successively down to the last row.

According to Proposition 1, a DDD vertex is uniquely de-
termined by its symbol name and the row and column indexes
of the associated minor where the symbol lies. When an inter-
mediate k × k minor is expanded, there exist k elements in the
first row of this minor. The k elements have their own symbol
names, but they share the identical row and column indexes of
the same underlying minor. Hence, k different DDD vertices
must be created for the k elements in the first row.

On the other hand, all the minors generated in the (n −
k + 1)th layer of the digraph are of dimension k × k, which
means that (n − k) “Minor” operations have been applied to
the original determinant. Since the expansion is in the natural
row-wise order, all the k × k minors are actually the results of
selecting k columns out of the k × n submatrix formed by the
bottom k rows of the original determinant, which implies that
there are C(n, k) such k × k minors. (Note that any such k × k
minor does not become singular until all of its first row elements
are set to zero after applying k “Remainder” operations.)

Any two k × k minors so selected may have some common
symbols in their first rows, but must not have the identical set
of column indexes, although their row indexes are all identical.
Therefore, the DDD vertices created for the first-row elements
of any two different k × k minors are all distinct (i.e., cannot
be shared).

Since there are C(n, k) minors of size k × k and each minor
has k first-row elements (each element creating one unique
DDD vertex), the total number of DDD vertices to be created
for all first-row elements of all k × k minors is k · C(n, k),
which is the total number of DDD vertices created for the
(n − k + 1)th layer of the digraph.

Summing over all the layers for k = 1, 2, . . . , n, we obtain
that the total number of DDD vertices to be constructed for
an n × n full matrix in the row-wise order is (using the basic
identities in combinatorics)

n∑

k=1

k · C(n, k) = n

n∑

k=1

C(n − 1, k − 1) = n · 2n−1 (4)

which completes the proof. �
The next theorem states that the DDD size obtained for a

full matrix with a row (column) order is actually optimal. The
proof is based on an argument which shows that the number of
vertices created in each layer of the layered digraph is minimum
by a row-wise (or column-wise) ordering. For this purpose, the
notion of path count is used.

Theorem 2: The row-wise (or column-wise) order is optimal
for any full matrix in the sense that the resulting DDD size is
minimum.

We reiterate that for an n × n full matrix with any symbol
order, all the minors in the (n − k + 1)th layer of the digraph
are of size k × k, where k = n, n − 1, . . . , 2, 1, from the top

SHI: COMPUTATIONAL COMPLEXITY ANALYSIS OF DETERMINANT DECISION DIAGRAM 831

layer down to the bottom layer. The lemma next provides a
technical preparation.

Lemma 1: The following properties hold for the vertices in
a layered digraph constructed for an n × n full matrix:

(a) For any symbol order, the maximum number of paths
arriving at any vertex in the (n − k + 1)th layer is (n −
k)! and the maximum number of paths leaving from
any vertex in the (n − k + 1)th layer is (k − 1)! for
k = n, n − 1, . . . , 2, 1.

(b) All digraph vertices resulting from the row-wise order
have the maximum number of arriving paths and the
maximum number of leaving paths.

Proof: When a path starting from a vertex at the top (first)
layer of digraph reaches a vertex, say, vertex x in the (n −
k + 1)th layer, it has gone through (n − k) “Minor” operations.
Given any symbol order, the total number of partial paths that
arrive at vertex x cannot exceed the total number of terms
expanded from a full (n − k) × (n − k) minor (without zero
elements). Hence, the maximal number of possible partial paths
that can arrive at vertex x in the (n − k + 1)th layer is (n − k)!.

Analogously, originating from the same vertex x at the (n −
k + 1)th layer and ending at one terminating vertex at layer-
n (the bottom layer) of the digraph, there could be no more
than (k − 1)! partial paths, which are all the terms obtained
by expanding a remaining full (k − 1) × (k − 1) minor. This
proves part (a) of the lemma.

With the row-wise ordering, the total number of vertices
in the (n − k + 1)th layer is k · C(n, k) (see the proof of
Theorem 1). Since for a full n × n matrix there must be total
(n)! paths passing all the vertices of any given layer, the average
number of paths passing each vertex in the (n − k + 1)th
layer is

(n)!
k · C(n, k)

=
(n)!(k)!(n − k)!

k · (n)!
= (k − 1)!(n − k)!. (5)

The result of part (a) implies that there are maximum (k −
1)!(n − k)! paths passing each vertex in the (n − k + 1)th
layer of the digraph. Consequently, the row-wise order has
realized (by equal distribution) that the maximum number of
paths arrive at and leave from every vertex in each layer of the
digraph, which proves part (b) of the lemma. �

Proof of Theorem 2: If neither a row-wise order nor a
column-wise order is used, then some vertices in a certain layer
of the digraph might have the number of arriving paths or the
number of leaving paths less than the corresponding maximum
numbers stated in Lemma 1 because singular minors might have
been encountered in the middle.

However, the total number of paths passing all the vertices in
any digraph layer must be (n)! for an n × n full matrix. There-
fore, more DDD vertices than the minimum must be created
in that layer to accommodate the total number of (n)! paths.
Consequently, the total number of digraph vertices, which is
equal to the DDD size, must be greater than the minimum size
(n · 2n−1).

Fig. 2. (a) Layered digraph of the 4 × 4 sparse matrix with a column-wise
order given in (6). (b) Optimal layered digraph with the order given in (7).

IV. DISCUSSION

The DDD complexity measure established in the preceding
section for full matrices can be used for several purposes. For
example, it helps us gain knowledge of how much storage
is compressed by using the DDD technique instead of direct
enumeration. It also helps us quantize the complexity difference
between using an optimal order for full matrices and using a
nonoptimal heuristic such as the Greedy-Labeling order pro-
posed in [2] for general sparse matrices.

First, we point out via an example that neither a row-wise nor
a column-wise order is necessarily optimal for a sparse matrix.
The 4 × 4 matrix

∣∣∣∣∣∣∣

0 e(3) 0 m(9)

b(1) f (4) j(6) n(10)

0 g(5) k(7) p(11)

d(2) 0 �(8) 0

∣∣∣∣∣∣∣
(6)

is ordered column-wise. Shown in Fig. 2(a) is the DDD digraph
constructed with the column-wise symbol order. The digraph
has 16 vertices. However, another order given below

∣∣∣∣∣∣∣

0 e(10) 0 m(11)

b(1) f (8) j(5) n(9)

0 g(6) k(4) p(7)

d(2) 0 �(3) 0

∣∣∣∣∣∣∣
(7)

gives rise to the digraph shown in Fig. 2(b) where the number of
vertices is 11, which is optimal because the number of symbols
in the matrix is also 11. However, the order given in (7) is
neither row-wise nor column-wise.

832 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 57, NO. 10, OCTOBER 2010

TABLE I
COMPARISON OF THE DDD SIZES PRODUCED BY THE ROW-WISE ORDER AND BY THE GREEDY-LABELING FOR FULL MATRICES

Fig. 3. Comparison of the DDD sizes by the row-wise order and by the greedy
order for full matrices.

An optimal order for a general sparse matrix is unknown.
Shi and Tan [2] proposed a Greedy-Labeling heuristic for
sparse matrices. This ordering heuristic is a dynamic ordering
scheme in that the symbol order is determined in the process of
determinant expansion according to the minimum degree rule:
by counting the row and column degrees (i.e., the number of
nonzeros) of an intermediate minor, a minimum-degree row
(respectively column, with priority upon a tie) is selected and
the in-row (respectively in-column) elements are sorted in the
increasing column (respectively row) degrees.

The order produced by the Greedy-Labeling for the 3 × 3
full determinant is given by

∣∣∣∣∣∣

a(1) d(4) g(5)

b(2) e(6) h(8)

c(3) f (7) i(9)

∣∣∣∣∣∣
(8)

which is neither row-wise nor column-wise. The DDD con-
structed with this order is of size 13, while the optimal DDD
size in row-wise order is n · 2n−1 = 3 × 22 = 12.

The DDD size given by the Greedy-Labeling for the 4 × 4
sparse matrix in (6) is 12, but the optimal DDD size for this
matrix is known to be 11. Hence, the Greedy-Labeling heuristic
is not necessarily optimal for general sparse matrices.

Listed in Table I are the DDD sizes for a sequence of full
matrices, which are counted by a DDD calculator program. The
DDD calculator implements both the row-wise (column-wise)
ordering and the Greedy-Labeling. The sizes marked “Row-
wise” in Table I are exactly equal to that predicted by the

complexity result of Theorem 1. The sizes marked by “Greedy”
are counted by the program. The rapidly growing complexity
difference is clearly seen from the data shown in Fig. 3.

Although the Greedy-Labeling is nonoptimal for both full
matrices and sparse matrices in general, it was found to be
a good heuristic for practical circuit problems in our experi-
mental tests.

V. CONCLUSION

An optimal symbol order for the DDD construction of full
matrices is discovered, and the optimal DDD size is derived
to be (n · 2n−1) for an n-dimensional full matrix. An optimal
order and the optimal DDD size for a general sparse matrix is
not available at the moment. It is expected that the complexity
growth rate would be much lower than two for most sparse
matrices arising from circuit problems, while a true growth
factor must be dependent on the matrix sparsity pattern. The
results developed in this brief also reveal that a symbol order is
the key factor that determines the complexity compression ratio
achievable by using a DDD. In this spirit, although the Greedy
order is an empirically good heuristic for practical circuits,
it does not preclude the existence of other better ordering
mechanisms for general circuit matrices.

REFERENCES

[1] H. Yang, A. Agarwal, and R. Vemuri, “Fast analog circuit synthesis us-
ing multi-parameter sensitivity analysis based on element-coefficient dia-
grams,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI, Tampa, FL, 2005,
pp. 71–76.

[2] C. J. R. Shi and X. D. Tan, “Canonical symbolic analysis of large analog
circuits with determinant decision diagrams,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 19, no. 1, pp. 1–18, Jan. 2000.

[3] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Comput., vol. C-35, no. 8, pp. 677–691, Aug. 1986.

[4] X. D. Tan and C. J. R. Shi, “Hierarchical symbolic analysis of analog inte-
grated circuits via determinant decision diagrams,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 19, no. 4, pp. 401–412, Apr. 2000.

[5] W. Verhaegen and G. E. Gielen, “Efficient DDD-based symbolic analysis of
linear analog circuits,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal
Process., vol. 49, no. 7, pp. 474–487, Jul. 2002.

[6] S. X. D. Tan and C. J. R. Shi, “Efficient approximation of symbolic expres-
sions for analog behavioral modeling and analysis,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 23, no. 6, pp. 907–918, Jun. 2004.

[7] S. X. D. Tan, “Symbolic analysis of analog integrated circuits by Boolean
logic operations,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 11,
pp. 1313–1317, Nov. 2006.

[8] E. Tlelo-Cuautle, C. Sánchez-López, E. Martínez-Romero, and
S. X. D. Tan, “Symbolic analysis of analog circuits containing voltage
mirrors and current mirrors,” Analog Integr. Circuits Signal Process.,
Feb. 4, 2010. [Online]. Available: www.springerlink.com

[9] S. Minato, “Zero-suppressed BDD’s for set manipulation in combinatorial
problems,” in Proc. 30th IEEE/ACM Des. Autom. Conf., Dallas, TX, 1993,
pp. 272–277.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

