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Qutline

 Absolute stability (A.S.)

« Convergence problem in transient simulation
« Numerical stability of three methods
 Region of A.S. for LMS methods
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Absolute Stablility
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FE

BE

TR

Three Integration Formulas

y,-¥,,—hy,,=0

Y,-Y,.—hy,=0

h . .
Yo =Y., —E(Yﬁ yn1j =0

LMS
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i—0 i=0

Lecture 11

All are iteration formulas.

The choice of “h” affects
the convergence.

Different methods have
different convergence
properties.
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Absolute Stability

 “Absolute stability” considers how the choice
of step-size (h) affects the convergence of an
Integration method.

 Characterized by a convergence region in the
complex plane.

« The convergence region is found by a simple
test model.
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A Simple Test Model

« Use a scalar model to test how local errors are
accumulated:
dx(t) The exact solution is:

Test model —7 — x(t)
dt

x(t) =e™

Initial condition: x(0)=1

Vq Find the voltage across R: v _(0)=0
d(v. -V.) V
—_ C in R — R V O =V-
Vin - R C — dt R R( ) in
me Ve __ Ve V. _v e C
- dt RC R = Vin®
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Why Choose a 1D Test Problem?

e General nonlinear model (n-dimensional)
= dx/dt =F(x); x €RM

e Linearization:
= dx/dt = Ax, A =08F(x,)/éx (Jacobian)

« Diagonalization:
= 3P, P1AP = A if all A,(A) are distinct;
» A=diag (A, Ay, ..oy A)
» dEfdt=AE, x=P§ (statetransform)

= d§ /dt=AE, 1=1,..,n (scalar models)
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Test Problem

 All n-dimensional non-linear models can be
characterized locally by scalar models:

X =AX". X(0)=1; xeR

A e C acomplex number
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Test a numerical method

Suppose we use a method called “Explicit Mid-Point (EMP)”
for numerical integration;

).( . Xn _Xn_2 °
n-1 = oh X, =X, ,+ 2h Xn-1

X

n-2 n-1 n

X X

Use this formula to solve the following test problem:

>.<: -X, X(0)=1
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Local Error Accumulation

Xn-1 = Xn = Xn-2 j‘> X, =X, ,t 2h Xn-1
2h

sExact solution known:

>.<= -X, X(0)=1

X(t)=¢e™
= Chooseh=0.1: x,=x%,,—2hXx,,
= X;=X,+hx'y (UseForward Euler for the 1st step)

Xo =1 Xy, =.9,X,, =.82,X,5, =.736, ..., Xg o = 44.0273186, X,, = —48.6495411

Diverges ...

2010-11-19 Lecture 11 slide 10



MATLAB Simulation

>>h=0.1;

>>t=1[0, h]; x=[4, 1-h];

>>N =50; forn= 3N X(n) = x(n-2) - 2*h*x(n-1); t(n) = t(n-1) + h; end

~>>plot(t, x, 'b-")
osl >> hold on
>> plot(t, exp(-t), 'r:")

0.6 -
o4y h=0.1
0.2 )

0 L
-0.2+
-04 | | | | |

0 0.5 1.5 2 2.5 3 35 4 4.5
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Good accuracy at the
beginning;

but diverges finally.

What caused the
problem?
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What if choosing a smaller step ?

X =X, ,+2hXn1

n

X, =X, + h).(o =(1-h)x, (for the 1st step)

Choose h =0.01: Still diverges (why?)

X, =1 X, =.99,..,X,=.3679,..., X, =.55,..., X, =12124.17839

Will a smaller “h” make it stable? --- actually not !!
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1

MATLAB Simulation

>>h=0.01;
>>t=[0, h]; x=[1, 1-h];

>> N =1000; for n = 3:N x(n) = x(n-2) - 2*h*x(n-1); t(n) = t(n-1) + h; end

>> clear figure

0.8+

0.6+

0.4

0.2

(V)

-0.2

041

-0.6

>>f2 = figure;
>> plot(t, x, 'b-"); hold on; plot(t, e

h=0.01

|
0 1

2010-11-19
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Xp(-t), 'r:";
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The Reason ?

Loot at the iteration:

Xy =X 2~ 2h - X 1 (h > O)

Suppose x,=cCc X" Is a solution.

Substitute into the iteration: X\ n x;\/l” 2_2h x/l” -

24+2hA-1=0
the characteristic equation

Find the too roots (characteristic values):

—_h+Jh* +1 A, =-h—-Vh*+1<-1
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Check the Characteristic Roots

X =x_,—2h-x_,

n

: HP. _ n n
The general solution is: X, =CA +C,A,

where ¢, and c, are constants to be
determined by initial conditions.

(unstable)

A, =—-h+~+h* +1, A, =—h—+h*+1<-1 (h>0)

The two characteristic roots determine the convergence of x, !
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Plot the roots

A, =—-h+h?+1, '

A, =-h-Vh*+1<-1 P

X =CcA +C,A,
UnIeSS the Inltlal Condl'ﬂon makes ____________________
c, = 0, the iteration always diverges.

unstable
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(cont’'d)

n

Butif c, =0, we’llget h =0 (which is not allowed.)

c,=0
The initial conditions are: 2 :>
x, = 1 (given); x,=(1-h)x,=1-h (byF.E.)

A, =1-h
1 ) h=0
A, =—-h++h*+1,

2010-11-19 Lecture 11

n n
X, =CA +C,A

X n — Cl/aln
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Numerical Behavior

Example: X = —X
 Apply Forward Euler with h = 1:

X, =1x,=0,x,=0,x;,=0

h—>

 Apply Forward Euler with h = 3:
X, =1X, =-2,X, =4,X, =-8,X, =16,X, =32

(diverges)

However, Backward Euler and Trapezoidal Rule would
not diverge.
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Stability Region

* Use a simple test model X’ = 7=1
XX (X Is complex) to K\K ‘
determine a region for the k/l '
step-size h
X = AX

e Better if region is larger.
+  Qg-plane

 Stability region can be @
derived algebraically. U

2010-11-19 Lecture 11 Shde 4
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Characterization Method

1. Choose an integration method with step size
“h>0".
2. Apply it to the test problem: dx/dt = X x

3. Derive an algebraic characteristic equation.
4. Define a quantity: g =X h (as a complex
number);

5. Find aregion for g in the C-plane in which
the integration method is stable.

e Theregion is called a “stability region”.
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Absolute Stability

 An integration method is “absolutely stable”
If the stability region contains the point g = 0.
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Stability of Difference Equation

e Theorem: The solutions of the difference equation

k
Zaixk—i =0
i=0

are bounded if and only if all roots of the characteristic equation

k .
> az" =0
i=0

Zq, ..., Z, (ris the number of distinct roots) are inside or on the

complex unit circle { |z| <1} and the roots withy

multiplicity 1.

2010-11-19

“

\modulus 1 are of

L

\<‘=1
o

Lecture 11
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Forward Euler

X, =X, ,+hXna X Ah

=X, _,+Ahx
— Xn—l + an—l

Char. eqn. z—(1+q)=0 :> Z|<lel+ql<1

1+q|<1 Tim g Region of Absolute Stability
g-plane Numerical Stability:
2 _.1 Given A <0 (stable
Uo Re;q model), choose h small
enough to have a stable
Region of Absolute Stability method
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X, = Xn_l—l-th

=X, , +\Ahx, :3 z(1-q)-1=0 ::> |4£1c41%a

q=A\h

+ Qg-plane

f=g=d

Backward Euler

X =AX

<1

Numerical Stability:

g = Ah lies in the left-half plane for
Re(A) < 0O (stable model).

Hence |g-1| > 1.

unstable Thus, the method is stable for all h >

X

11

2010-11-19

v

0 as long as the model is stable.
2

However, for Re(A) > 0 (unstable
model), the numerical solution
may be stable for h large.
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Trapezoidal Rule

h . o
X =X, +—(Xn-1+ Xn) X = AX ( _ﬂjz_(lJrﬂj:o
2 2 2
hi
X =X _,+—(Xn1+ Xn) ::>
2 1+y
g =Ah Z|<1le|—£21<1
%
2
T im(q)
stable
unstable
Re(q) _ .
9+2| _, TR is stable when the model is
qg-2|" stable
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Trapezoidal Ringing

Im(q)
J( Problem:
stable
unstable
: If g=io (pure imaginary),
then the root is
Re(q) en e 1ot )
z = (1+ia)/(1-ia) = |z| = 1.
X
We get “trapezoidal ringing.”
>t
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Stability of LMS Methods

Consider a Linear Multi-Step method

i=0 i=0

X = AX
::> 20X, + X, ; =0 (difference equation)

(ocl. +q[3i)xn_l. =0

INYES

> ,.

let g=A4h

0
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Difference Equation

 Check the stability of this difference equation

k
ZO (@j +qB; )x,_;j =0
|=

n
Il x=cz

0=c[(a +qBo)2" +(ay +qBYZ" +...+ (01, + B, )Z"™" ]

@ (char. egn.)

(ag +9By)Z" + (o, +qB)Z ™ +...+ (o, +qB,) =0
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Region of Absolute Stability

« The region of absolute stability of an LMS method is the set of (
= Ah (complex) such that all solutions of the difference equation

IES

(ocl. +qBi)xn e 0

i=0

remain bounded as n 2 oco.

« A method is “absolutely stable” if the stability region contains
the point g = 0.

g = Xh
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Region of Absolute Stability

(1+ qBo)Zk + (0, + QB1)Zk_1 +...+(a, +gB,)=0

For what values of g do all the k roots of this polynomial lie in
theunitdisc {|z| <1} ?

(z" +oclzk‘1+...+ock)+q([302k +Blz"‘1+...+Bk) =0

q:_@ {p(2)22k+alzkl+...+ak

o(2) o(z) =B, 2" + B2 +...+B,
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Region of Absolute Stability

The “region of absolute stability” is defined by the set

S2{g1q=-p(2)/o(2). |4<1

Y

P
N

/1

2010-11-19

—

Mapping btw
complex planes

Lecture 11

.
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Conformal Mapping

Z-plane

\ZIG’G _@ LHS
\|2|<1 / )

Basic Results from Theory of Complex Variables
1. Mapping —p(z) / o(z) is conformal.
2. Region of “left-hand side” (LHS) to Region of LHS.
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Application to Mid-Point Method

X, =X, ,+ 2h Xn-1 z-plane

n

2° =1+2qz z=e” \Jl :
=5(z-3)=3(e" o) 1sine I %

The stability region is just the interval e :

[-j +j] on the jw axis. | %

Iunstable
Hence, the mid-point method is 4 7
Inherently unstable !
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e Analysis

) t z-plane P \\q-plane
e’ P R R
Ny e
— T ztoq) e '1 >
(1+g)e” /\ N Y
>0 T @+e)e” 1
<0
g = }(Z_EJ The vertical line [-1, 1] is at
2 z the LHS of the blue ellipse
1 o 1 and at the RHS of the red
= 5{(1+ g)e _Ee } ellipse.

_ %{[m £) - 11}:059 vl @ e+ i}sin 9}

+ & 1+ ¢

>0, ife>0 ... ] always > 1
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Interpretation - 1

Z2

=1+ 2qz

Poles:

2010-11-19

 For any point outside
of the interval jsin@ in
the g-plane, there exist
two curves passing
that point, one is
mapped from a circle
|z| > 1, the other from a
circuit |z| < 1.

PP, =1

Both inside & outsize of z| =1
mapped to the region outside of
the interval line.
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Interpretation - 2

outside

~ / / \

1
— L
- =

- -

\
-
~~

~
~

]
/ ]
/ 1
7
Cd
7,
7~
_”
‘\
- ~
7
L ™
V4 - ~
- ~
b d
-
’/
<
IR

~
2
m
~—
D
~
o2

N
~

]
\

Inside

Both inside and outside of the unit circle are mapped to the
region outside of the interval [|SING].

2010-11-19
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