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QOutline

Part 1:

e Gaussian Elimination

LU Factorization

e Pivoting

 Doolittle method and Crout’'s Method
e Summary

Part 2: Sparse Matrix
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Motivation

o Either in Sparse Tableau Analysis (STA) or In
Modified Nodal Analysis (MNA), we have to
solve linear system of equations: AXx =D

A 0 0 \// (0
0 [/ -Allv|=|0
K K 0 \e) S g+t 6-12

R, R, ° R, e) (0
1 1+1 e, /g
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Motivation

« Even in nonlinear circuit analysis, after
"linearization", again one has to solve a
system of linear equations: Ax =D.

« Many other engineering problems require
solving a system of linear equations.

* Typically, matrix size is of 1000s to millions.

e This needs to be solved 1000 to million times
for one simulation cycle.

 That's why we'd like to have very efficient
linear solvers!

2010-11-15 Lecture 9 slide 4



Problem Description

Problem:

Solve Ax=D
A: nxn (real, non-singular), x: nx1, b: nx1
Methods:
— Direct Methods (this lecture)
Gaussian Elimination, LU Decomposition, Crout

— Indirect, Iterative Methods (another lecture)

Gauss-Jacobi, Gauss-Seidel, Successive Over
Relaxation (SOR), Krylov
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Gaussian Elimination -- Example

2X+Y =5
X+2y =4
. 2 1:5
1 a X =2
(1~.0)(2 1
2 1 L
=11 ~J| > 3 LU factorization
1 2 — 10—
\2 JU 2
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Use of LU Factorization

L U
[ W
> 1)(x) 1 0)2 1), (5
1 2)\y -1 10 3 y |4
\2 2
1 L\/Define
2 1
u) X
Solving the L-system: (vj . (o EJ(y]
’ 2
(g \
10 (u e ' u 5
2 1fv) (4 (Vj: >
R Solve 2
L

Triangle systems are easy to solve (by back-substitution.)
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Use of LU Factorization

(5
u S u
o)) = (- 3}

(21\ ) (5 5 4
L2 \2) 5 )WY
1 Solving the U-system:
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LU Factorization

A=LU :k ‘ The task of L & U
factorization is to find the

elements In matrices L and U.

Ax =L(Ux)=Ly =b

1. Lety=UX.
2. SolveyfromLy=>Db

3. Solve x from Ux =y
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Advantages of LU Factorization

« When solving Ax =b for multiple b, but the

same A, then we only LU-factorize A only
once.

* |n circuit simulation, entries of A may change,
but structure of A does not alter.

— This factor can used to speed up repeated LU-
factorization.

— Implemented as symbolic factorization in the
“sparsel.3” solver in Spice 3f4.
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Gaussian Elimination

e Gaussian elimination is a process of row
transformation

AX =D

Eliminate the lower triangular part
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Gaussian Elimination

a, #0 — &, a, az ' &, | b
a, ) | @y ax &, | by
- a — ﬂé d3p  da3 &, | by

dp G i3 Gy, b,
0 &y, a3 - &, b,
0 a;, as a3, b;
Entries updated/ :
0 d,p dpz t dpy b/?
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Eliminating 15 Column

 Column elimination is equiv to row transformation

0o ... 0
dyq
1 0 X
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Eliminating 2"d Column

1 0 0 - 0] a, a, a - a,)
0 1 0 0 (2) (2) (2)
2 (2 0 (&5 | &3 - a;
- 1 0
7 R I P P P
0o a."(zz) 0 1
U [ a8 - 0 |aF| ay - al)
als) #0 ] 5 B )
aq Q5 Aag a, b,
(2) (2) (2) 2
-:‘|_ (E) — A3 . 0 ap; a3 o Gyp bz()
L2 A = A 10 0 (3) (3) (3)
dyy’ - dg, | by
o Lof &y - a9 4

n .
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Continue on Elimination

« Suppose all diagonals are nonzero

djp Gy a3 | b
‘ dyy Gy, 3 vt Gy, | b,

-1 -1 oo -1 -1
L* Loy L L, A3y dzp dgz Ay b,

Upper triangular

AN x = Hin)

n :
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Triangular System

Gaussian elimination ends up with the following
upper triangular system of equations

a1 G a3 A, |(x) (b
(2) (2) (2) (2)
0 ay &3 - a; || x b,
0 0 A a | |-[o0
0 0 0 - amp\x,) (")

Solve this system from bottom up: X,, X1, .-y Xq
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LU Factorization

e Gaussian elimination leads to LU factorization

(Lt Lot L LA = U

2010-11-15 Lecture 9 slide 17



Complexity of LU

_ 21
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_ 731 | 31 332

ai, )
2 a
_"nl
a, —|7nl anz

anS

a
a,
ay

n

n

n

nn

# of mul /div = (n-1)*n = n?

1

/=1
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Cost of Back-Substitution

a,
0
0

0

X

B

n - _(n
)

a,
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2 2)
32(2) dys

0

(3)
ds3

X

aln /Xl\ ( bl )
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Zero Diagonal

Example 1. After two steps of Gaussian elimination:

 x 0 0 0 0] :
x 0 0. ..x...01.
0 o it -1 1 o
RR >
o o0 i+t L o 1
R R
0 0 0 x 0
_0 0 X X 0_ L

Gaussian elimination
cannot continue
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Pivoting

Solution 1.
Interchange rows to bring a non-zero element into position (k, K):
< 0o 1 1 x x 0
x x 0 ‘ O 1 1
x x 0 X X O

Solution 2: How about column exchange? Yes

Then the unknowns are re-ordered as well.

In general both rows and columns can be exchanged!

2010-11-15
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Small Diagonal

12 .5 12 5| x,| | 75

Example 2: {1.25 x10 ~*  1.25 Mxl } ) {6.25}

Assume finite arithmetic: 3-digit floating point, we have

-10° 1.25 x10 “*| 1.25 Mxl}: {6.25}

L 12 .5 (12 .5]|| x. 75

pivoting 1

1.25 x10 ~* 1.25 X, | 6.25
0 —1.25 x 10 °J|[ X2 - 6.25 x10 °

/
12.5 rounded off 1

X2 — 5
(1.25 x10 "*)x, + (1.25)x, = 6.25 ‘ X; =0

Unfortunately, (0, 5) is not the solution. Considering the 2nd

equation: 12.5*0+ 12.5*5=62.5 = 75. _
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Accuracy Depends on Pivoting

—1£‘E: 1.25 x10 4| 1.25 |[x;] [6.25
g 12 .5 12 .5)|| x, 75
pivoting

Reason:
a,, (the pivot) is too small relative to the other numbers!

Solution: Don't choose small element to do elimination. Pick a
large element by row / column interchanges.

Correct solution to 5 digit accuracy Is
X, =1.0001
X, =5.0000
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What causes accuracy problem?

e 11l Conditioning: The A matrix close to singular
« Round-off error: Relative magnitude too big

\A X=y=0
X+y=1
X-y=0 X+y=1

\ >
x—y=0 x=y=0
x—1.01ly =0.01
y € resulting in numerical errors

Ill-conditioned 7 >
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Pivoting Strategies

1. Partial Pivoting

2. Complete Pivoting

3. Threshold Pivoting
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Pivoting Strategy 1

1. Partial Pivoting: (Row interchange only)
Choose r as the smallest integer such that:

k
o'
U

k ’v
4 >

Rows k to n

—

>

Search Area
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Pivoting Strategy 2

2. Complete Pivoting: (Row and column interchange)
Choose r and s as the smallest integer such that:

ars(k)‘ = max ai-(k)‘

i J k :"_
G L

rows k to n;
cols kton

Search Area
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Pivoting Strategy 3

3. Threshold Pivoting:
a. Apply partial pivoting only if . "

b. Apply complete pivoting only if ‘a o ‘ < a (K

user specified

ark(k)‘Z max ajk(k)‘
j=k,..., n
L
(k)| _ (k)
s ‘_ 'anl?(,n aij ‘ S
j=k,..., n

Implemented in Spice 3f4
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Variants of LU Factorization

e Doolittle Method
e Crout Method

 Motivated by directly filling in L/U elements in the

storage space of the original matrix "A".

A=LU = .‘ !
€21

631

fnl

Reuse the storage

2010-11-15
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Variants of LU Factorization

Hence we need a sequential method to process the rows and
columns of A in certain order — processed rows / columns are
not used in the later processing.

a1 4ap a,
Y=Y a,
4y Az as,
_anl anz ann a
2010-11-15

kl Reuse the storage
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Doolittle Method - 1

Keep this row
aln[/ i 1 0 0

Ay dp Ay @n l,y, 1 0
dy1 d3p Ay dp | ~ a1 U3 1
A Gpp dpz ctr dpy | l ni 4 n2 4 n3

First solve the 15t row of U, I.e., U(1, :)

(thy U, Uy Uy,) =

2010-11-15 Lecture 9
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0 0 0 U
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an2

anS

Doolittle Method - 2

21

31

U™ nl

0) 0
1 0
(e 1
fnz gns

2010-11-15
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N
(‘Ul U, U U,
0 Uy Uy Usp
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Doolittle Method - 3

. GQp A3 a, ,é 0 0 0 Up
dyy | G Gp3 ) <~£_23> 1 0 0 Y20 | |3)
43 Gy g &, | = |[farf fez 1 0 Y3n
: (2) 1 / ! 1
anl anz an3 ces ann | ™ nl n2 n3 _ U,m ]
Solve the 2" row of U, i.e., U(2, 2:n)
loUip Uz = Uy,) +|(U22 Uys Uy, )
= Kazz 8y3 v &)
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Doolittle Method - 4

B 7 1
a, 4dpp ag a ,
14
dy)  dyy, Ay a, 21
dy dzp Ay sz, | 31
a a a B f nl
nl n2 n3 nn ]

L\U = |
2
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Crout Method

e Similar to the Doolittle Method, but starts from the 1st
column (Doolittle starts from the 1St row.)

v

l1q 0 0 0 | ‘@ Uy, Uz uln_
A=LU = log| £ O -+ 0 0 U Uy - Uy,
U3 l3p fa3 = O 0 0 @ v Usg
énl gnZ €n3 énn_ —O 0 0 @-
_ The diagonals of U
The computation order of the Crout Method: are normalized |
» 2
L\U = |
— 4
— 6
)
1 3 5
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Storage of LU Factorization

Using only one 2-dimensional array !

U

=)

A A(4)

* In sparse matrix implementation, this type of storage
requires increasing memory space because of fill-ins
during the factorization.
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Summary

« LU factorization has been used in virtually all
circuit simulators

— Good for multiple RHS and sensitivity calculation

e Pivoting Is required to handle zero diagonals
and to improve numerical accuracy

— Partial pivoting (row exchange): tradeoff between
accuracy and efficiency

— Matrix condition number is used to analyze the
effect of round-off errors and numerical stability

2010-11-15 Lecture 9 slide 37



Part 2.
Programming Techniques
for Sparse Matrices
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QOutline

« Why Sparse Matrix Techniques?

o Sparse Matrix Data Structure
 Markowitz Pivoting

e Diagonal Pivoting for MNA Matrices
 Modified Markowitz pivoting

« How to Handle Sparse RHS

e Summary
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Why Sparse Matrix?

Motivation:
— n =103 equations
— Complexity of Gaussian elimination ~ O(n?3)
— n=10°=>» ~ 10° flops operations
= (1 GHz computer) 10 sec
= storage 10° words

Exploiting Sparsity
— MNA =» 3 nonzeros /row

— Can reach complexity for Gaussian elimination
e ~0O(nt) —0O(nt> (Empirical complexity)
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Sparse Matrix Programming

 Use linked-list data structure

— to avoid storing zeros

— used to be hard before 1980s: in Fortran!
« Avoid trivial operations 0x =0, 0+x =X

e Two kinds of zero

— Structural zeros — always 0 independent of
numerical operations

— Numerical zeros —resulting from computation
 Avoid losing sparsity (very important!)
— sparsity changes with pivoting
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Non-zero Fill-ins

e Gaussian elimination causes nonzero fill-ins

OOA__.OOORU
24020
Al N
Olo|N|O]O
Olo|—|O]O
OlIO|N|O]O
O] <
—
44-@“5
ool Nl Rioh NN N
T
T |O|m]©
N N E=1 Y k=)
—AlMI~lo]
OJOCO|IN]JO O
OlO0]|H|O]O
o|l-|o|9]o
OJO|INJO O
W|o|m|o] <
'
Nl E=2 K= Bl RTp)
MNMIEM|IWOIO|
-
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How to Maintain Sparsity

« One should choose appropriate pivoting (during
Gaussian Elimination, G.E.) to avoid large increment
of fill-ins.

After row/col

reordering no fill-ins
n introduced
before GE after GE before GE \ after GE

XX XXX |x XXX |x|x|[x X X X X

X [ X X X X X

X X ' X X ' X X

X X X X X X

X X X | X X | X

X X XX [X XXX XX [ X [X X

4
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e Markowitz criterion

kth pivot;

AK) is the reduced matrix
NZ = nonzero

Markowitz Criterion

The num of nonzeros in arow (column) is also called the row

(column) degree.

The column degrees can be used for column ordering.

2010-11-15

If chosen for pivoting

/

x/ X X 4
[ X | X 3
l x || || 2
' \ Ny 2

X 2

3 2 2 3 c. \r

# NZ this col (column degrees)

Lecture 9

«— # NZ this row

(row degrees)
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Markowitz Product

o |If Gaussian Elimination to pivot on (i, |)
« Markowitz product = (r; —1)(c;-1)

= maximum possible number of fill-ins If
pivoting at (i, |)

« Recommendations: (implemented in Sparsel.3)

— Best with largest magnitude of pivot element and
smallest Markowitz product

— Try threshold test after choosing smallest
Markowitz product (M.P.)

— Break ties (if equal M.P.) by choosing element with
largest magnitude
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Sparse Matrix Data Structure

Example Matrix

r\c 1 2
1| s 19> 1.2
2 &0 1.5
3| 21 0| 1.7

Matrix Element structure

2010-11-15

struct elem{

*next_in_row,

*next_in_col;

real value;
Int row;
Int col;
struct elem
struct elem

} Element;

Lecture 9
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Data Structure in Sparse 1.3

o« Sparse 1.3 — Written by Ken Kundert, 1985~1988, then PhD
student at Berkeley, later with Cadence Design Systems, Inc.

FirstinCol[3]

FirstI?CoI[l] FirstinCol[2]
]
FirstinRow[1] ——| 1.0 1| 1 1.2 1| 2
diag[l] — > JI,
FirstinRow[2] > 1.5 2 2
diag[2]

v

FirstinRow[3] — 2.1 3 1
diag[3] ——

1.7 3 3

/2.1 /3 ZIi

value row col

2010-11-15 Lecture 9
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ASTAP Data Structure

« ASTAP is an IBM simulator using STA (Sparse
Tableau Analysis).

Row Pointers| 1, 3, 4, 6 -1
r\c 1 2 3 [ ‘I ] l
v l
1 1.2 0 Col Indices 1 2 2 1] 3|-1
2 1.5
Values 1.0 1.2| 1.5/ 2.1| 1.7
3 2.1 0 L. 7 | e ——— >

values stored row-wise

v'Row Pointers point to the beginning of Col Indices.

v'"Nonzeros in the same row are indexed by their col indexes continuously.

v'Used by many iterative sparse solvers
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Key Loops In a SPICE Program

ax
cC—=Ff(x,t
p (x,t)

CX/7+1:CX/7 +h.f(X/7+1’t/7+1)+.”

k of k k-1
ox, =) | - xD

/

Lo (0 )

Update stamps
related to time

!

Newton-Raphson
(at point x)
Invoke linear solver

OX

v

X :=X + AX

v

t:=1+At

2010-11-15 Lecture 9
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Linear Solves In Simulation

Update stamps
related to time

¥

Newton-Raphson

(at point x)
Invoke linear solver
X =X + AX

|

t:=t+At

>At each time point, Ax = b has to be solved for many times

time t

~X

time points
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Structure of Matrix Stamps

e |n circuit simulation, matrix being solved
repeatedly is of the same structur;

« only some entries vary at different frequency
or time points.

/ Typical matrix structure

T| |C |
T
A= TC C = Constant

T e :
T =Time varying
ch C
C

2010-11-15 Lecture 9

X = Nonlinear (varying even at
the same time point)
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Strategies for Efficiency

o Utilizing the structural information can greatly
Improve the solving efficiency.

e Strategies:
— Weighted Markowitz Product
— Reuse the LU factorization
— lterative solver (by conditioning)
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A Good (Sparse) LU Solver

Properties of a good LU solver:
e Should have a good column ordering algorithm.

* With a good column ordering, partial (row)
pivoting would be enough'!

« Should have an ordering/elimination separated
design:
— I.e., ordering is separated from elimination.
— SuperlLU does this,
— but Sparsel.3 doesn't.
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Optimal Ordering is NP-hard

« The ordering has a significant impact on the
memory and computational requirements for
the latter stages.

« However, finding the optimal ordering for A
(in the sense of minimizing fill-in) has been
proven to be NP-complete.

 Heuristics must be used for all but simple (or
specially structured) cases.

M.R. Garey and D.S. Johnson, Computers and Intractibility: A Guide to the Theory of NP-Completeness
W.H. Freeman, New York, 1979.
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Column Ordering

Why Important ?

e A good column ordering greatly reduces the
number of fill-ins, resulting in a vast speedup.

 However, searching a pivot with minimum

degree at each step (in Sparse 1.3) Is not
efficient.

* Best to get a good ordering before elimination
(e.g. SuperLU), but not easy!
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Available Ordering Algorithms

SuperLU uses the following algorithms:

e Multiple Minimum Degree (MMD) applied to the
structure of (ATA).

— Mostly good

o Multiple Minimum Degree (MMD) applied to the
structure of (AT+A).

— Mostly good

e Column Approximate Minimum Degree
(COLAMD).

— Mostly not good!
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Summary

 Exploiting sparsity reduces CPU time and
memory

 Markowitz algorithm reflects a good tradeoff
between overhead (computation of MP) and
savings (less fill-ins)

 Use weighted Markowitz to account for
different types of element stamps in nonlinear
dynamic circuit simulation

« Consider sparse RHS and selective unknowns
for speedup
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No-turn-in Exercise

Spice3f4 contains a solver called Sparse 1.3 (in
src/lib/sparse)

This is aindependent solver that can be used outside
Spice3f4.

Download the sparse package from the course web
page (sparse.tar.gz) (or ask TA).

Find the test program called "spTest.c".

Modify this program if necessary so that you can run
the solver.

Create some test matrices to test the sparse solver.
Compare the solved results to that by MATLAB.
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Software

Sparsel.3is in C and was programmed by Dr. Ken
Kundert (fellow of Cadence; architect of Spectre).

Source code is available from
http://www.netlib.org/sparse/

SparseLib++ is in C++ and comes from NIST. The
authors are J. Dongarra, A. Loumsdaine, R. Pozo, K.
Remington.

See A Sparse Matrix Library in C++ for High
Performance Architectures”, Proc. of the Second
Object Oriented Numerics Conference, pp. 214-218,
1994.

The paper and the C++ source code are available from
http://math.nist.gov/sparselib%2b%?2b/
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