2010-11-15

Lecture 9.

Linear Solver:
LU Solver and Sparse Matrix

Guoyong Shi, PhD
shiguoyong@ic.sjtu.edu.cn
School of Microelectronics

Shanghai Jiao Tong University
Fall 2010

Slide 1

QOutline

Part 1:

e Gaussian Elimination

LU Factorization

e Pivoting

 Doolittle method and Crout’'s Method
e Summary

Part 2: Sparse Matrix

2010-11-15 Lecture 9 slide 2

Motivation

o Either in Sparse Tableau Analysis (STA) or In
Modified Nodal Analysis (MNA), we have to
solve linear system of equations: AXx =D

A 0 0 \// (0
0 [/ -Allv|=|0
K K 0 \e) S g+t 6-12

R, R, ° R, e) (0
1 1+1 e, /g

2010-11-15 Lecture 9 slide 3

Motivation

« Even in nonlinear circuit analysis, after
"linearization", again one has to solve a
system of linear equations: Ax =D.

« Many other engineering problems require
solving a system of linear equations.

* Typically, matrix size is of 1000s to millions.

e This needs to be solved 1000 to million times
for one simulation cycle.

 That's why we'd like to have very efficient
linear solvers!

2010-11-15 Lecture 9 slide 4

Problem Description

Problem:

Solve Ax=D
A: nxn (real, non-singular), x: nx1, b: nx1
Methods:
— Direct Methods (this lecture)
Gaussian Elimination, LU Decomposition, Crout

— Indirect, Iterative Methods (another lecture)

Gauss-Jacobi, Gauss-Seidel, Successive Over
Relaxation (SOR), Krylov

2010-11-15 Lecture 9 slide 5

Gaussian Elimination -- Example

2X+Y =5
X+2y =4
. 2 1:5
1 a X =2
(1~.0)(2 1
2 1 L
=11 ~J| > 3 LU factorization
1 2 — 10—
\2 JU 2

2010-11-15 Lecture 9 slide 6

Use of LU Factorization

L U
[W
> 1)(x) 1 0)2 1), (5
1 2)\y -1 10 3 y |4
\2 2
1 L\/Define
2 1
u) X
Solving the L-system: (vj . (o EJ(y]
’ 2
(g \
10 (u e ' u 5
2 1fv) (4 (Vj: >
R Solve 2
L

Triangle systems are easy to solve (by back-substitution.)
2010-11-15 Lecture 9 slide 7

Use of LU Factorization

(5
u S u
o)) = (- 3}

(21\) (5 5 4
L2 \2) 5)WY
1 Solving the U-system:

2010-11-15 Lecture 9 slide 8

LU Factorization

A=LU :k ‘ The task of L & U
factorization is to find the

elements In matrices L and U.

Ax =L(Ux)=Ly =b

1. Lety=UX.
2. SolveyfromLy=>Db

3. Solve x from Ux =y

2010-11-15 Lecture 9 slide 9

Advantages of LU Factorization

« When solving Ax =b for multiple b, but the

same A, then we only LU-factorize A only
once.

* |n circuit simulation, entries of A may change,
but structure of A does not alter.

— This factor can used to speed up repeated LU-
factorization.

— Implemented as symbolic factorization in the
“sparsel.3” solver in Spice 3f4.

2010-11-15 Lecture 9 slide 10

Gaussian Elimination

e Gaussian elimination is a process of row
transformation

AX =D

Eliminate the lower triangular part

2010-11-15 Lecture 9 slide 11

Gaussian Elimination

a, #0 — &, a, az ' &, | b
a,) | @y ax &, | by
- a — ﬂé d3p da3 &, | by

dp G i3 Gy, b,
0 &y, a3 - &, b,
0 a;, as a3, b;
Entries updated/ :
0 d,p dpz t dpy b/?

2010-11-15 Lecture 9 slide 12

Eliminating 15 Column

 Column elimination is equiv to row transformation

0o ... 0
dyq
1 0 X

2010-11-15

0

a, a3
ay, dy3
ds, A3
anz anS
a, ds

2 2
a; ag;)

(2) (2)
dyy” dag

(2) (2)
anz a/73

Lecture 9

a
a,
as

n

n

n

nn _

n
(2)
aZn
(2)
asn

(2)
Apn

ISERS N~

b'?
slide 13

Eliminating 2"d Column

1 0 0 - 0] a, a, a - a,)
0 1 0 0 (2) (2) (2)
2 (2 0 (&5 | &3 - a;
- 1 0
7 R I P P P
0o a."(zz) 0 1
U [a8 - 0 |aF| ay - al)
als) #0] 5 B)
aq Q5 Aag a, b,
(2) (2) (2) 2
-:‘|_ (E) — A3 . 0 ap; a3 o Gyp bz()
L2 A = A 10 0 (3) (3) (3)
dyy’ - dg, | by
o Lof &y - a9 4

n .
2010-11-15 Lecture 9 slide 14

Continue on Elimination

« Suppose all diagonals are nonzero

djp Gy a3 | b
‘ dyy Gy, 3 vt Gy, | b,

-1 -1 oo -1 -1
L* Loy L L, A3y dzp dgz Ay b,

Upper triangular

AN x = Hin)

n :
2010-11-15 Lecture 9 - slide 15

Triangular System

Gaussian elimination ends up with the following
upper triangular system of equations

a1 G a3 A, |(x) (b
(2) (2) (2) (2)
0 ay &3 - a; || x b,
0 0 A a | |-[o0
0 0 0 - amp\x,) (")

Solve this system from bottom up: X,, X1, .-y Xq

2010-11-15 Lecture 9 slide 16

LU Factorization

e Gaussian elimination leads to LU factorization

(Lt Lot L LA = U

2010-11-15 Lecture 9 slide 17

Complexity of LU

_ 21
a,, —’/561 Aoy

a ﬂ/
_ 731 | 31 332

ai,)
2 a
_"nl
a, —|7nl anz

anS

a
a,
ay

n

n

n

nn

of mul /div = (n-1)*n = n?

1

/=1

2010-11-15

aniz :6/7(/7+1)(2/7+1) ~

Lecture 9

n>>1

o(n*)

slide 18

Cost of Back-Substitution

a,
0
0

0

X

B

n - _(n
)

a,

a3

2 2)
32(2) dys

0

(3)
ds3

X

aln /Xl\ (bl)
2 2)
az(n) Xz bZ
3 _ 3
9 | x || 2
a,(,z)_ \Xn) \b,gn)]
1 1
B b" P - a/s/zl,/)vxn
n-1 " 1
a/(vlzl,/)v—l

n
Total # of mul / div = Z/’ = %n(n +1) ~ 0(n?)
/=1

2010-11-15

Lecture 9

slide 19

Zero Diagonal

Example 1. After two steps of Gaussian elimination:

 x 0 0 0 0] :
x 0 0. ..x...01.
0 o it -1 1 o
RR >
o o0 i+t L o 1
R R
0 0 0 x 0
0 0 X X 0 L

Gaussian elimination
cannot continue

2010-11-15 Lecture 9 slide 20

Pivoting

Solution 1.
Interchange rows to bring a non-zero element into position (k, K):
< 0o 1 1 x x 0
x x 0 ‘ O 1 1
x x 0 X X O

Solution 2: How about column exchange? Yes

Then the unknowns are re-ordered as well.

In general both rows and columns can be exchanged!

2010-11-15

—)

Lecture 9

e 1

X
X

0 1]
x 0
X O_

Small Diagonal

12 .5 12 5| x,| | 75

Example 2: {1.25 x10 ~* 1.25 Mxl }) {6.25}

Assume finite arithmetic: 3-digit floating point, we have

-10° 1.25 x10 “*| 1.25 Mxl}: {6.25}

L 12 .5 (12 .5]|| x. 75

pivoting 1

1.25 x10 ~* 1.25 X, | 6.25
0 —1.25 x 10 °J|[X2 - 6.25 x10 °

/
12.5 rounded off 1

X2 — 5
(1.25 x10 "*)x, + (1.25)x, = 6.25 ‘ X; =0

Unfortunately, (0, 5) is not the solution. Considering the 2nd

equation: 12.5*0+ 12.5*5=62.5 = 75. _
2010-11-15 Lecture 9 slide 22

Accuracy Depends on Pivoting

—1£‘E: 1.25 x10 4| 1.25 |[x;] [6.25
g 12 .5 12 .5)|| x, 75
pivoting

Reason:
a,, (the pivot) is too small relative to the other numbers!

Solution: Don't choose small element to do elimination. Pick a
large element by row / column interchanges.

Correct solution to 5 digit accuracy Is
X, =1.0001
X, =5.0000

2010-11-15 Lecture 9 slide 23

What causes accuracy problem?

e 11l Conditioning: The A matrix close to singular
« Round-off error: Relative magnitude too big

\A X=y=0
X+y=1
X-y=0 X+y=1

\ >
x—y=0 x=y=0
x—1.01ly =0.01
y € resulting in numerical errors

Ill-conditioned 7 >

2010-11-15 Lecture 9 slide 24

Pivoting Strategies

1. Partial Pivoting

2. Complete Pivoting

3. Threshold Pivoting

2010-11-15 Lecture 9 slide 25

Pivoting Strategy 1

1. Partial Pivoting: (Row interchange only)
Choose r as the smallest integer such that:

k
o'
U

k ’v
4 >

Rows k to n

—

>

Search Area

2010-11-15 Lecture 9 slide 26

Pivoting Strategy 2

2. Complete Pivoting: (Row and column interchange)
Choose r and s as the smallest integer such that:

ars(k)‘ = max ai-(k)‘

i J k :"_
G L

rows k to n;
cols kton

Search Area

2010-11-15 Lecture 9 slide 27

Pivoting Strategy 3

3. Threshold Pivoting:
a. Apply partial pivoting only if . "

b. Apply complete pivoting only if ‘a o ‘ < a (K

user specified

ark(k)‘Z max ajk(k)‘
j=k,..., n
L
(k)| _ (k)
s ‘_ 'anl?(,n aij ‘ S
j=k,..., n

Implemented in Spice 3f4

2010-11-15 Lecture 9 slide 28

Variants of LU Factorization

e Doolittle Method
e Crout Method

 Motivated by directly filling in L/U elements in the

storage space of the original matrix "A".

A=LU = .‘ !
€21

631

fnl

Reuse the storage

2010-11-15

0 0 - O] Uy, Uy, Uy
1 o - 0 O Uy Uy -

(e, 1 - 0 0 0 wugy -

Lecture 9

slide 29

Variants of LU Factorization

Hence we need a sequential method to process the rows and
columns of A in certain order — processed rows / columns are
not used in the later processing.

a1 4ap a,
Y=Y a,
4y Az as,
_anl anz ann a
2010-11-15

kl Reuse the storage

Lecture 9

slide 30

Doolittle Method - 1

Keep this row
aln[/ i 1 0 0

Ay dp Ay @n l,y, 1 0
dy1 d3p Ay dp | ~ a1 U3 1
A Gpp dpz ctr dpy | l ni 4 n2 4 n3

First solve the 15t row of U, I.e., U(1, :)

(thy U, Uy Uy,) =

2010-11-15 Lecture 9

(a11 a5, as

Uy, U, Uj; u,
0 Uy Uy U,
0 0 Uy Us,
0 0 0 U

aln)
slide 31

an2

anS

Doolittle Method - 2

21

31

U™ nl

0) 0
1 0
(e 1
fnz gns

2010-11-15

Lecture 9

@)

N
(‘Ul U, U U,
0 Uy Uy Usp
0 0 wsg Ysn
L O O O unn_
U, =a,
slide 32

Doolittle Method - 3

. GQp A3 a, ,é 0 0 0 Up
dyy | G Gp3) <~£_23> 1 0 0 Y20 | |3)
43 Gy g &, | = |[farf fez 1 0 Y3n
: (2) 1 / ! 1
anl anz an3 ces ann | ™ nl n2 n3 _ U,m]
Solve the 2" row of U, i.e., U(2, 2:n)
loUip Uz = Uy,) +|(U22 Uys Uy,)
= Kazz 8y3 v &)
2010-11-15 Lecture 9 slide 33

Doolittle Method - 4

B 7 1
a, 4dpp ag a ,
14
dy) dyy, Ay a, 21
dy dzp Ay sz, | 31
a a a B f nl
nl n2 n3 nn]

L\U = |
2

2010-11-15

£

Lecture 9

o W

Uy, U, Uj; u,
0 Uy Uy U,
0 0 ugy Us,
0 0 o0 u |

slide 34

Crout Method

e Similar to the Doolittle Method, but starts from the 1st
column (Doolittle starts from the 1St row.)

v

l1q 0 0 0 | ‘@ Uy, Uz uln_
A=LU = log| £ O -+ 0 0 U Uy - Uy,
U3 l3p fa3 = O 0 0 @ v Usg
énl gnZ €n3 énn_ —O 0 0 @-
_ The diagonals of U
The computation order of the Crout Method: are normalized |
» 2
L\U = |
— 4
— 6
)
1 3 5

2010-11-15 Lecture 9 slide 35

Storage of LU Factorization

Using only one 2-dimensional array !

U

=)

A A(4)

* In sparse matrix implementation, this type of storage
requires increasing memory space because of fill-ins
during the factorization.

2010-11-15 Lecture 9 slide 36

Summary

« LU factorization has been used in virtually all
circuit simulators

— Good for multiple RHS and sensitivity calculation

e Pivoting Is required to handle zero diagonals
and to improve numerical accuracy

— Partial pivoting (row exchange): tradeoff between
accuracy and efficiency

— Matrix condition number is used to analyze the
effect of round-off errors and numerical stability

2010-11-15 Lecture 9 slide 37

Part 2.
Programming Techniques
for Sparse Matrices

2010-11-15 Slide 38

QOutline

« Why Sparse Matrix Techniques?

o Sparse Matrix Data Structure
 Markowitz Pivoting

e Diagonal Pivoting for MNA Matrices
 Modified Markowitz pivoting

« How to Handle Sparse RHS

e Summary

2010-11-15 Lecture 9 slide 39

Why Sparse Matrix?

Motivation:
— n =103 equations
— Complexity of Gaussian elimination ~ O(n?3)
— n=10°=>» ~ 10° flops operations
= (1 GHz computer) 10 sec
= storage 10° words

Exploiting Sparsity
— MNA =» 3 nonzeros /row

— Can reach complexity for Gaussian elimination
e ~0O(nt) —0O(nt> (Empirical complexity)

2010-11-15 Lecture 9 slide 40

Sparse Matrix Programming

 Use linked-list data structure

— to avoid storing zeros

— used to be hard before 1980s: in Fortran!
« Avoid trivial operations 0x =0, 0+x =X

e Two kinds of zero

— Structural zeros — always 0 independent of
numerical operations

— Numerical zeros —resulting from computation
 Avoid losing sparsity (very important!)
— sparsity changes with pivoting

2010-11-15 Lecture 9 slide 41

Non-zero Fill-ins

e Gaussian elimination causes nonzero fill-ins

OOA__.OOORU
24020
Al N
Olo|N|O]O
Olo|—|O]O
OlIO|N|O]O
O] <
—
44-@“5
ool Nl Rioh NN N
T
T |O|m]©
N N E=1 Y k=)
—AlMI~lo]
OJOCO|IN]JO O
OlO0]|H|O]O
o|l-|o|9]o
OJO|INJO O
W|o|m|o] <
'
Nl E=2 K= Bl RTp)
MNMIEM|IWOIO|
-

slide 42

Lecture 9

2010-11-15

How to Maintain Sparsity

« One should choose appropriate pivoting (during
Gaussian Elimination, G.E.) to avoid large increment
of fill-ins.

After row/col

reordering no fill-ins
n introduced
before GE after GE before GE \ after GE

XX XXX |x XXX |x|x|[x X X X X

X [X X X X X

X X ' X X ' X X

X X X X X X

X X X | X X | X

X X XX [X XXX XX [X [X X

4

2010-11-15 fill-ins Lecture 9 slide 43

e Markowitz criterion

kth pivot;

AK) is the reduced matrix
NZ = nonzero

Markowitz Criterion

The num of nonzeros in arow (column) is also called the row

(column) degree.

The column degrees can be used for column ordering.

2010-11-15

If chosen for pivoting

/

x/ X X 4
[X | X 3
l x || || 2
' \ Ny 2

X 2

3 2 2 3 c. \r

NZ this col (column degrees)

Lecture 9

«— # NZ this row

(row degrees)

slide 44

Markowitz Product

o |If Gaussian Elimination to pivot on (i, |)
« Markowitz product = (r; —1)(c;-1)

= maximum possible number of fill-ins If
pivoting at (i, |)

« Recommendations: (implemented in Sparsel.3)

— Best with largest magnitude of pivot element and
smallest Markowitz product

— Try threshold test after choosing smallest
Markowitz product (M.P.)

— Break ties (if equal M.P.) by choosing element with
largest magnitude

2010-11-15 Lecture 9 slide 45

Sparse Matrix Data Structure

Example Matrix

r\c 1 2
1| s 19> 1.2
2 &0 1.5
3| 21 0| 1.7

Matrix Element structure

2010-11-15

struct elem{

*next_in_row,

*next_in_col;

real value;
Int row;
Int col;
struct elem
struct elem

} Element;

Lecture 9

slide 46

Data Structure in Sparse 1.3

o« Sparse 1.3 — Written by Ken Kundert, 1985~1988, then PhD
student at Berkeley, later with Cadence Design Systems, Inc.

FirstinCol[3]

FirstI?CoI[l] FirstinCol[2]
]
FirstinRow[1] ——| 1.0 1| 1 1.2 1| 2
diag[l] — > JI,
FirstinRow[2] > 1.5 2 2
diag[2]

v

FirstinRow[3] — 2.1 3 1
diag[3] ——

1.7 3 3

/2.1 /3 ZIi

value row col

2010-11-15 Lecture 9

slide 47

ASTAP Data Structure

« ASTAP is an IBM simulator using STA (Sparse
Tableau Analysis).

Row Pointers| 1, 3, 4, 6 -1
r\c 1 2 3 [‘I] l
v l
1 1.2 0 Col Indices 1 2 2 1] 3|-1
2 1.5
Values 1.0 1.2| 1.5/ 2.1| 1.7
3 2.1 0 L. 7 | e ——— >

values stored row-wise

v'Row Pointers point to the beginning of Col Indices.

v'"Nonzeros in the same row are indexed by their col indexes continuously.

v'Used by many iterative sparse solvers

2010-11-15 Lecture 9 slide 48

Key Loops In a SPICE Program

ax
cC—=Ff(x,t
p (x,t)

CX/7+1:CX/7 +h.f(X/7+1’t/7+1)+.”

k of k k-1
ox, =) | - xD

/

Lo (0)

Update stamps
related to time

!

Newton-Raphson
(at point x)
Invoke linear solver

OX

v

X :=X + AX

v

t:=1+At

2010-11-15 Lecture 9

slide 49

Linear Solves In Simulation

Update stamps
related to time

¥

Newton-Raphson

(at point x)
Invoke linear solver
X =X + AX

|

t:=t+At

>At each time point, Ax = b has to be solved for many times

time t

~X

time points

2010-11-15 Lecture 9 slide 50

Structure of Matrix Stamps

e |n circuit simulation, matrix being solved
repeatedly is of the same structur;

« only some entries vary at different frequency
or time points.

/ Typical matrix structure

T| |C |
T
A= TC C = Constant

T e :
T =Time varying
ch C
C

2010-11-15 Lecture 9

X = Nonlinear (varying even at
the same time point)

slide 51

Strategies for Efficiency

o Utilizing the structural information can greatly
Improve the solving efficiency.

e Strategies:
— Weighted Markowitz Product
— Reuse the LU factorization
— lterative solver (by conditioning)

2010-11-15 Lecture 9 slide 52

A Good (Sparse) LU Solver

Properties of a good LU solver:
e Should have a good column ordering algorithm.

* With a good column ordering, partial (row)
pivoting would be enough'!

« Should have an ordering/elimination separated
design:
— I.e., ordering is separated from elimination.
— SuperlLU does this,
— but Sparsel.3 doesn't.

2010-11-15 Lecture 9 slide 53

Optimal Ordering is NP-hard

« The ordering has a significant impact on the
memory and computational requirements for
the latter stages.

« However, finding the optimal ordering for A
(in the sense of minimizing fill-in) has been
proven to be NP-complete.

 Heuristics must be used for all but simple (or
specially structured) cases.

M.R. Garey and D.S. Johnson, Computers and Intractibility: A Guide to the Theory of NP-Completeness
W.H. Freeman, New York, 1979.

2010-11-15 Lecture 9 slide 54

Column Ordering

Why Important ?

e A good column ordering greatly reduces the
number of fill-ins, resulting in a vast speedup.

 However, searching a pivot with minimum

degree at each step (in Sparse 1.3) Is not
efficient.

* Best to get a good ordering before elimination
(e.g. SuperLU), but not easy!

2010-11-15 Lecture 9 slide 55

Available Ordering Algorithms

SuperLU uses the following algorithms:

e Multiple Minimum Degree (MMD) applied to the
structure of (ATA).

— Mostly good

o Multiple Minimum Degree (MMD) applied to the
structure of (AT+A).

— Mostly good

e Column Approximate Minimum Degree
(COLAMD).

— Mostly not good!

2010-11-15 Lecture 9 slide 56

Summary

 Exploiting sparsity reduces CPU time and
memory

 Markowitz algorithm reflects a good tradeoff
between overhead (computation of MP) and
savings (less fill-ins)

 Use weighted Markowitz to account for
different types of element stamps in nonlinear
dynamic circuit simulation

« Consider sparse RHS and selective unknowns
for speedup

2010-11-15 Lecture 9 slide 57

No-turn-in Exercise

Spice3f4 contains a solver called Sparse 1.3 (in
src/lib/sparse)

This is aindependent solver that can be used outside
Spice3f4.

Download the sparse package from the course web
page (sparse.tar.gz) (or ask TA).

Find the test program called "spTest.c".

Modify this program if necessary so that you can run
the solver.

Create some test matrices to test the sparse solver.
Compare the solved results to that by MATLAB.

2010-11-15 Lecture 9 slide 58

Software

Sparsel.3is in C and was programmed by Dr. Ken
Kundert (fellow of Cadence; architect of Spectre).

Source code is available from
http://www.netlib.org/sparse/

SparseLib++ is in C++ and comes from NIST. The
authors are J. Dongarra, A. Loumsdaine, R. Pozo, K.
Remington.

See A Sparse Matrix Library in C++ for High
Performance Architectures”, Proc. of the Second
Object Oriented Numerics Conference, pp. 214-218,
1994.

The paper and the C++ source code are available from
http://math.nist.gov/sparselib%2b%?2b/

2010-11-15 Lecture 9 slide 59

http://math.nist.gov/sparselib%2b%2b/

References

1. G. Dahlquist and A. Bjorck, Numerical Methods
(translated by N. Anderson), Prentice Hall, Inc.
Englewood Cliffs, New Jersey, 1974.

2. W. J. McCalla, Fundamentals of Computer-Aided
Circult Simulation, Kluwer Academic Publishers.

1. Chapter 3, “Sparse Matrix Methods”

3. Albert Ruehli (Ed.), “Circuit Analysis, Simulation and
Design”, North-Holland, 1986.

1. K. Kundert, “Sparse Matrix Techniques”

4. J. Dongarra, A. Loumsdaine, R. Pozo, K. Remington,
A Sparse Matrix Library in C++ for High
Performance Architectures,” Proc. of the Second
Object Oriented Numerics Conference, pp. 214-218,
1994.

2010-11-15 Lecture 9 slide 60

	Lecture 9. �Linear Solver:�LU Solver and Sparse Matrix
	Outline
	Motivation
	Motivation
	Problem Description
	Gaussian Elimination -- Example
	Use of LU Factorization
	Use of LU Factorization
	LU Factorization
	Advantages of LU Factorization
	Gaussian Elimination
	Gaussian Elimination
	Eliminating 1st Column
	Eliminating 2nd Column
	Continue on Elimination
	Triangular System
	LU Factorization
	Complexity of LU
	Cost of Back-Substitution
	Zero Diagonal
	Pivoting
	Small Diagonal
	Accuracy Depends on Pivoting
	What causes accuracy problem?
	Pivoting Strategies
	Pivoting Strategy 1
	Pivoting Strategy 2
	Pivoting Strategy 3
	Variants of LU Factorization
	Variants of LU Factorization
	Doolittle Method – 1
	Doolittle Method – 2
	Doolittle Method – 3
	Doolittle Method – 4
	Crout Method
	Storage of LU Factorization
	Summary
	Part 2. �Programming Techniques �for Sparse Matrices
	Outline
	Why Sparse Matrix?
	Sparse Matrix Programming
	Non-zero Fill-ins
	How to Maintain Sparsity
	Markowitz Criterion
	Markowitz Product
	Sparse Matrix Data Structure
	Data Structure in Sparse 1.3
	ASTAP Data Structure
	Key Loops in a SPICE Program
	Linear Solves in Simulation
	Structure of Matrix Stamps
	Strategies for Efficiency
	A Good (Sparse) LU Solver
	Optimal Ordering is NP-hard
	Column Ordering
	Available Ordering Algorithms
	Summary
	No-turn-in Exercise
	Software
	References

