PRINCIPLES OF CIRCUIT SIMULAITON

Lecture 9. Linear Solver: LU Solver and Sparse Matrix

Guoyong Shi, PhD
shiguoyong@ic.sjtu.edu.cn
School of Microelectronics
Shanghai Jiao Tong University
Fall 2010

2010-11-15 Slide 1

Outline

Part 1:

- Gaussian Elimination
- LU Factorization
- Pivoting
- Doolittle method and Crout's Method
- Summary

Part 2: Sparse Matrix

Motivation

 Either in Sparse Tableau Analysis (STA) or in Modified Nodal Analysis (MNA), we have to solve linear system of equations: Ax = b

$$\begin{pmatrix} A & 0 & 0 \\ 0 & I & -A^T \\ K_i & K_v & 0 \end{pmatrix} \begin{pmatrix} i \\ v \\ e \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ S \end{pmatrix}$$

$$\begin{pmatrix} A & 0 & 0 \\ 0 & I & -A^{T} \\ K_{i} & K_{v} & 0 \end{pmatrix} \begin{pmatrix} i \\ v \\ e \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ S \end{pmatrix}$$

$$\begin{bmatrix} \frac{1}{R_{1}} + G_{2} + \frac{1}{R_{3}} & -G_{2} - \frac{1}{R_{3}} \\ -\frac{1}{R_{3}} & \frac{1}{R_{4}} + \frac{1}{R_{3}} \end{bmatrix} \begin{pmatrix} e_{1} \\ e_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ I_{S5} \end{pmatrix}$$

Motivation

- Even in nonlinear circuit analysis, after "linearization", again one has to solve a system of linear equations: Ax = b.
- Many other engineering problems require solving a system of linear equations.
- Typically, matrix size is of 1000s to millions.
- This needs to be solved 1000 to million times for one simulation cycle.
- That's why we'd like to have very efficient linear solvers!

Problem Description

Problem:

Solve Ax = b

A: nxn (real, non-singular), x: nx1, b: nx1

Methods:

- Direct Methods (this lecture)
 Gaussian Elimination, LU Decomposition, Crout
- Indirect, Iterative Methods (another lecture)
 Gauss-Jacobi, Gauss-Seidel, Successive Over Relaxation (SOR), Krylov

Gaussian Elimination -- Example

$$\begin{cases} 2x + y = 5 \\ x + 2y = 4 \end{cases}$$

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 0 & \frac{3}{2} \end{pmatrix}$$
 LU factorization

Use of LU Factorization

Solving the L-system:

$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$
Solve
$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 5 \\ \frac{3}{2} \end{bmatrix}$$

Triangle systems are easy to solve (by back-substitution.)

Use of LU Factorization

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Solving the U-system:

LU Factorization

$$Ax = L(Ux) = Ly = b$$

The task of L & U factorization is to find the elements in matrices L and U.

- Let y = Ux.
 Solve y from Ly = b
 Solve x from Ux = y

Advantages of LU Factorization

- When solving Ax = b for multiple b, but the same A, then we only LU-factorize A only once.
- In circuit simulation, entries of A may change, but structure of A does not alter.
 - This factor can used to speed up repeated LUfactorization.
 - Implemented as <u>symbolic factorization</u> in the "sparse1.3" solver in Spice 3f4.

Gaussian Elimination

 Gaussian elimination is a process of <u>row</u> <u>transformation</u>

$$Ax = b$$

Eliminate the lower triangular part

Gaussian Elimination

Eliminating 1st Column

Column elimination is equiv to row transformation

slide 13 2010-11-15 Lecture 9

Eliminating 2nd Column

2010-11-15 Lecture 9 slide 14

Continue on Elimination

Suppose all diagonals are nonzero

slide 15

Triangular System

Gaussian elimination ends up with the following upper triangular system of equations

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & \cdots & a_{2n}^{(2)} \\ 0 & 0 & a_{33}^{(3)} & \cdots & a_{3n}^{(3)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn}^{(n)} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2^{(2)} \\ b_3^{(3)} \\ \vdots \\ b_n^{(n)} \end{pmatrix}$$

Solve this system from bottom up: $x_n, x_{n-1}, ..., x_1$

LU Factorization

Gaussian elimination leads to LU factorization

Complexity of LU

$$a_{11} \neq 0$$

of mul / div = $(n-1)*n \approx n^2$

$$\sum_{i=1}^{n} i^2 = \frac{1}{6} n(n+1)(2n+1) \sim O(n^3)$$

Cost of Back-Substitution

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & \cdots & a_{2n}^{(2)} \\ 0 & 0 & a_{33}^{(3)} & \cdots & a_{3n}^{(3)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn}^{(n)} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2^{(2)} \\ b_3^{(3)} \\ \vdots \\ b_n^{(n)} \end{pmatrix}$$

$$X_{n} = \frac{b_{n}^{(n)}}{a_{nn}^{(n)}} \qquad X_{n-1} = \frac{b_{n-1}^{(n-1)} - a_{n-1,n}^{(n-1)} X_{n}}{a_{n-1,n-1}^{(n-1)}}$$

Total # of mul / div =
$$\sum_{i=1}^{n} i = \frac{1}{2} n(n+1) \sim O(n^2)$$

Zero Diagonal

Example 1: After two steps of Gaussian elimination:

Gaussian elimination cannot continue

Pivoting

Solution 1:

Interchange rows to bring a non-zero element into position (k, k):

$$\begin{bmatrix} 0 & 1 & 1 \\ \times & \times & 0 \\ \times & \times & 0 \end{bmatrix}$$

$$\begin{bmatrix} x & x & 0 \\ 0 & 1 & 1 \\ x & x & 0 \end{bmatrix}$$

Solution 2: How about column exchange? Yes

Then the unknowns are re-ordered as well.

$$\begin{bmatrix} 0 & 1 & 1 \\ \times & \times & 0 \\ \times & \times & 0 \end{bmatrix}$$

$$\times \times \times 0$$

$$\times \times 0$$

In general both rows and columns can be exchanged!

2010-11-15 Lecture 9 slide 21

Small Diagonal

Example 2:
$$\begin{bmatrix} 1.25 \times 10^{-4} & 1.25 \\ 12.5 & 12.5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6.25 \\ 75 \end{bmatrix}$$

Assume finite arithmetic: 3-digit floating point, we have

pivoting
$$\begin{bmatrix}
1.25 \times 10^{-4} \\
12.5
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} = \begin{bmatrix}
6.25 \\
75
\end{bmatrix}$$

$$\begin{bmatrix}
1.25 \times 10^{-4} & 1.25 \\
0 & -1.25 \times 10^{-5}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} = \begin{bmatrix}
6.25 \\
-6.25 \times 10^{-5}
\end{bmatrix}$$
12.5 rounded off
$$\begin{cases}
x_2 = 5 \\
(1.25 \times 10^{-4})x_1 + (1.25)x_2 = 6.25
\end{cases}$$
 $x_1 = 0$

Unfortunately, (0, 5) is not the solution. Considering the 2nd equation: $12.5 * 0 + 12.5 * 5 = 62.5 \neq 75$.

slide 22 2010-11-15 Lecture 9

Accuracy Depends on Pivoting

Reason:

a₁₁ (the pivot) is too small relative to the other numbers!

Solution: Don't choose small element to do elimination. Pick a large element by row / column interchanges.

Correct solution to 5 digit accuracy is

$$X_1 = 1.0001$$

$$X_2 = 5.0000$$

What causes accuracy problem?

- III Conditioning: The A matrix close to singular
- Round-off error: Relative magnitude too big

$$x + y = 1$$

$$x - y = 0$$

$$x + y = 1$$

$$x - y = 0$$

$$x - y = 0$$

$$x - 1.01 y = 0.01$$
ill-conditioned
$$x - y = 0$$

Pivoting Strategies

1. Partial Pivoting

2. Complete Pivoting

3. Threshold Pivoting

Pivoting Strategy 1

1. Partial Pivoting: (Row interchange only)

Choose *r* as the smallest integer such that:

$$\begin{vmatrix} a_{rk}^{(k)} \end{vmatrix} = \underbrace{\max_{j=k,...,n}} a_{jk}^{(k)}$$
Rows k to n

Pivoting Strategy 2

2. Complete Pivoting: (Row and column interchange)

Choose r and s as the smallest integer such that:

Pivoting Strategy 3

3. Threshold Pivoting:

- a. Apply partial pivoting only if
- b. Apply complete pivoting only if

$$\begin{vmatrix} a_{kk} & (k) \\ a_{kk} & (k) \end{vmatrix} < \left(\varepsilon_{p} \right) \begin{vmatrix} a_{rk} & (k) \\ a_{kk} & (k) \end{vmatrix} < \left(\varepsilon_{p} \right) \begin{vmatrix} a_{rs} & (k) \\ a_{rs} & (k) \end{vmatrix}$$
user specified

$$\left|a_{rk}^{(k)}\right| = \max_{j=k,\dots,n} \left|a_{jk}^{(k)}\right|$$

$$\left| a_{rs}^{(k)} \right| = \max_{\substack{i=k,\dots,n\\i=k,\dots,n}} \left| a_{ij}^{(k)} \right|$$

Implemented in Spice 3f4

Variants of LU Factorization

- **Doolittle Method**
- **Crout Method**
- Motivated by directly filling in L/U elements in the storage space of the original matrix "A".

$$A = LU =$$

$$A = LU = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ \ell_{21} & 1 & 0 & \cdots & 0 \\ \ell_{31} & \ell_{32} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \ell_{n1} & \ell_{n2} & \ell_{n3} & \cdots & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\ 0 & u_{22} & u_{23} & \cdots & u_{2n} \\ 0 & 0 & u_{33} & \cdots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_{nn} \end{bmatrix}$$

Reuse the storage

slide 29 2010-11-15 Lecture 9

Variants of LU Factorization

Hence we need a sequential method to process the rows and columns of A in certain order – processed rows / columns are not used in the later processing.

$$A = LU =$$

Reuse the storage

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ \ell_{21} & 1 & 0 & \cdots & 0 \\ \ell_{31} & \ell_{32} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \ell_{n1} & \ell_{n2} & \ell_{n3} & \cdots & 1 \end{bmatrix}$$

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\ 0 & u_{22} & u_{23} & \cdots & u_{2n} \\ 0 & 0 & u_{33} & \cdots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_{nn} \end{bmatrix}$$

Doolittle Method – 1

Keep this row

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ \ell_{21} & 1 & 0 & \cdots & 0 \\ \ell_{31} & \ell_{32} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \ell_{n1} & \ell_{n2} & \ell_{n3} & \cdots & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\ 0 & u_{22} & u_{23} & \cdots & u_{2n} \\ 0 & 0 & u_{33} & \cdots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_{nn} \end{bmatrix}$$

First solve the 1st row of U, i.e., U(1, :)

$$(u_{11} \quad u_{12} \quad u_{13} \quad \cdots \quad u_{1n}) = (a_{11} \quad a_{12} \quad a_{13} \quad \cdots \quad a_{1n})$$

Doolittle Method – 2

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ \ell_{21} & 1 & 0 & \cdots & 0 \\ \ell_{31} & \ell_{32} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \ell_{n1} & \ell_{n2} & \ell_{n3} & \cdots & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\ 0 & u_{22} & u_{23} & \cdots & u_{2n} \\ 0 & 0 & u_{33} & \cdots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_{nn} \end{bmatrix}$$

Then solve the 1st column of L, i.e., L(2:n, 1)

$$\begin{bmatrix} a_{21} \\ a_{31} \\ \vdots \\ a_{n1} \end{bmatrix} = \begin{bmatrix} \ell_{21} \\ \ell_{31} \\ \vdots \\ \ell_{n1} \end{bmatrix} \qquad u_{11} = a_{11}$$

Doolittle Method - 3

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ \ell_{21} & 1 & 0 & \cdots & 0 \\ \ell_{31} & \ell_{32} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \ell_{n1} & \ell_{n2} & \ell_{n3} & \cdots & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\ 0 & u_{22} & u_{23} & \cdots & u_{2n} \\ 0 & 0 & 0 & u_{33} & \cdots & u_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_{nn} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{a}_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & u_{22} & u_{23} & \cdots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_{nn} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{a}_{11} & a_{12} & u_{13} & \cdots & u_{1n} \\ 0 & u_{22} & u_{23} & \cdots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_{nn} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{a}_{11} & a_{12} & u_{13} & \cdots & u_{1n} \\ 0 & u_{22} & u_{23} & \cdots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_{nn} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{a}_{11} & a_{12} & a_{13} & \cdots & u_{1n} \\ 0 & u_{22} & u_{23} & \cdots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_{nn} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{a}_{11} & a_{12} & u_{13} & \cdots & u_{1n} \\ 0 & u_{22} & u_{23} & \cdots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_{nn} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{a}_{11} & a_{12} & a_{13} & \cdots & u_{1n} \\ 0 & u_{22} & u_{23} & \cdots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & u_{nn} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{a}_{11} & a_{12} & u_{13} & \cdots & u_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & u_{nn} \end{bmatrix}$$

Doolittle Method - 4

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ \ell_{21} & 1 & 0 & \cdots & 0 \\ \ell_{31} & \ell_{32} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \ell_{n1} & \ell_{n2} & \ell_{n3} & \cdots & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\ 0 & u_{22} & u_{23} & \cdots & u_{2n} \\ 0 & 0 & u_{33} & \cdots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_{nn} \end{bmatrix}$$

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\ 0 & u_{22} & u_{23} & \cdots & u_{2n} \\ 0 & 0 & u_{33} & \cdots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_{nn} \end{bmatrix}$$

The computation order of the Doolittle Method:

Crout Method

 Similar to the Doolittle Method, but starts from the 1st column (Doolittle starts from the 1st row.)

The computation order of the Crout Method:

The diagonals of U are normalized!

slide 35 2010-11-15 Lecture 9

Storage of LU Factorization

Using only one 2-dimensional array!

• In sparse matrix implementation, this type of storage requires increasing memory space because of fill-ins during the factorization.

Summary

- LU factorization has been used in virtually all circuit simulators
 - Good for multiple RHS and sensitivity calculation
- Pivoting is required to handle zero diagonals and to improve numerical accuracy
 - Partial pivoting (row exchange): tradeoff between accuracy and efficiency
 - Matrix condition number is used to analyze the effect of round-off errors and numerical stability

PRINCIPLES OF CIRCUIT SIMULAITON

Part 2. Programming Techniques for Sparse Matrices

2010-11-15 Slide 38

Outline

- Why Sparse Matrix Techniques?
- Sparse Matrix Data Structure
- Markowitz Pivoting
- Diagonal Pivoting for MNA Matrices
- Modified Markowitz pivoting
- How to Handle Sparse RHS
- Summary

Why Sparse Matrix?

Motivation:

- $n = 10^3$ equations
- Complexity of Gaussian elimination ~ O(n³)
- n = 10^3 → $\sim 10^9$ flops operations
 - → (1 GHz computer) 10 sec
 - → storage 10⁶ words

Exploiting Sparsity

- MNA → 3 nonzeros / row
- Can reach complexity for Gaussian elimination
 - $\sim O(n^{1.1}) O(n^{1.5})$ (Empirical complexity)

Sparse Matrix Programming

- Use linked-list data structure
 - to avoid storing zeros
 - used to be hard before 1980s: in Fortran!
- Avoid trivial operations 0x = 0, 0+x = x
- Two kinds of zero
 - Structural zeros always 0 independent of numerical operations
 - Numerical zeros resulting from computation
- Avoid losing sparsity (very important!)
 - sparsity changes with pivoting

Non-zero Fill-ins

Gaussian elimination causes nonzero fill-ins

How to Maintain Sparsity

 One should choose appropriate <u>pivoting</u> (during Gaussian Elimination, G.E.) to avoid large increment of fill-ins.

Markowitz Criterion

Markowitz criterion

- kth pivot;
- A^(k) is the reduced matrix
- NZ = nonzero
- The num of nonzeros in a row (column) is also called the row (column) degree.
- The column degrees can be used for column ordering.

Markowitz Product

- If Gaussian Elimination to pivot on (i, j)
- Markowitz product = (r_i -1)(c_j-1)
 = maximum possible number of fill-ins if pivoting at (i, j)
- Recommendations: (implemented in Sparse1.3)
 - Best with largest magnitude of pivot element and smallest Markowitz product
 - Try threshold test <u>after</u> choosing smallest Markowitz product (M.P.)
 - Break ties (if equal M.P.) by choosing element with largest magnitude

Sparse Matrix Data Structure

Example Matrix

r\c	1	2	3
1	/ 1-	→ 1.2	0
2	0	1.5	0
3	2.1	0	1.7

Matrix Element structure

```
struct elem{
    real value;
    int row;
    int col;
    struct elem *next_in_row;
    struct elem *next_in_col;
} Element;
```

Data Structure in Sparse 1.3

 Sparse 1.3 – Written by Ken Kundert, 1985~1988, then PhD student at Berkeley, later with Cadence Design Systems, Inc.

ASTAP Data Structure

 ASTAP is an IBM simulator using STA (Sparse Tableau Analysis).

r\c	1	2	3
1	1	1.2	0
2	0	1.5	0
3	2.1	0	1.7

values stored row-wise

- ✓ <u>Row Pointers</u> point to the <u>beginning</u> of <u>Col Indices</u>.
- ✓ Nonzeros in the same row are indexed by their col indexes continuously.
- ✓ Used by many *iterative* sparse solvers

Key Loops in a SPICE Program

$$C \frac{dx}{dt} = f(x,t)$$

$$Cx_{n+1} = Cx_n + h \cdot f(x_{n+1}, t_{n+1}) + \cdots$$

$$Cx_{n+1}^{(k)} = \left[\frac{\partial f}{\partial x}\right] \left[x_{n+1}^{(k)} - x_{n+1}^{(k-1)}\right] + \cdots$$

$$A = \frac{\partial f(x_{n+1}^{(k-1)}, t_{n+1})}{\partial x}$$

Linear Solves in Simulation

Structure of Matrix Stamps

- In circuit simulation, matrix being solved repeatedly is of the <u>same structur</u>;
- only some entries vary at different frequency or time points.

Typical matrix structure

C = Constant

T = Time varying

X = Nonlinear (varying even at the same time point)

Strategies for Efficiency

 Utilizing the structural information can greatly improve the solving efficiency.

Strategies:

- Weighted Markowitz Product
- Reuse the LU factorization
- Iterative solver (by conditioning)

— ...

A Good (Sparse) LU Solver

Properties of a good LU solver:

- Should have a good column ordering algorithm.
- With a good column ordering, <u>partial (row)</u>
 <u>pivoting</u> would be enough!
- Should have an ordering/elimination <u>separated</u> <u>design</u>:
 - i.e., ordering is separated from elimination.
 - SuperLU does this,
 - but Sparse1.3 doesn't.

Optimal Ordering is NP-hard

- The ordering has a significant impact on the memory and computational requirements for the latter stages.
- However, finding the optimal ordering for A
 (in the sense of minimizing fill-in) has been
 proven to be NP-complete.
- Heuristics must be used for all but simple (or specially structured) cases.

M.R. Garey and D.S. Johnson, *Computers and Intractibility: A Guide to the Theory of NP-Completeness* W.H. Freeman, New York, 1979.

Column Ordering

Why Important?

- A good column ordering greatly reduces the number of fill-ins, resulting in a vast speedup.
- However, searching a pivot with minimum degree at each step (in Sparse 1.3) is not efficient.
- Best to get a good ordering before elimination (e.g. SuperLU), but not easy!

Available Ordering Algorithms

SuperLU uses the following algorithms:

- Multiple Minimum Degree (MMD) applied to the structure of (A^TA).
 - Mostly good
- Multiple Minimum Degree (MMD) applied to the structure of (A^T+A).
 - Mostly good
- Column Approximate Minimum Degree (COLAMD).
 - Mostly not good!

Summary

- Exploiting sparsity reduces CPU time and memory
- Markowitz algorithm reflects a good tradeoff between overhead (computation of MP) and savings (less fill-ins)
- Use <u>weighted Markowitz</u> to account for different types of element stamps in nonlinear dynamic circuit simulation
- Consider sparse RHS and selective unknowns for speedup

No-turn-in Exercise

- Spice3f4 contains a solver called Sparse 1.3 (in src/lib/sparse)
- This is a independent solver that can be used outside Spice3f4.
- Download the sparse package from the course web page (sparse.tar.gz) (or ask TA).
- Find the test program called "spTest.c".
- Modify this program if necessary so that you can run the solver.
- Create some test matrices to test the sparse solver.
- Compare the solved results to that by MATLAB.

Software

- Sparse1.3 is in C and was programmed by Dr. Ken Kundert (fellow of Cadence; architect of Spectre).
- Source code is available from http://www.netlib.org/sparse/
- SparseLib++ is in C++ and comes from NIST. The authors are J. Dongarra, A. Loumsdaine, R. Pozo, K. Remington.
- See" A Sparse Matrix Library in C++ for High Performance Architectures", Proc. of the Second Object Oriented Numerics Conference, pp. 214-218, 1994.
- The paper and the C++ source code are available from http://math.nist.gov/sparselib%2b%2b/

References

- 1. G. Dahlquist and A. Bjorck, *Numerical Methods* (translated by N. Anderson), Prentice Hall, Inc. Englewood Cliffs, New Jersey, 1974.
- 2. W. J. McCalla, Fundamentals of Computer-Aided Circuit Simulation, Kluwer Academic Publishers.
 - 1. Chapter 3, "Sparse Matrix Methods"
- 3. Albert Ruehli (Ed.), "Circuit Analysis, Simulation and Design", North-Holland, 1986.
 - 1. K. Kundert, "Sparse Matrix Techniques"
- 4. J. Dongarra, A. Loumsdaine, R. Pozo, K. Remington, "A Sparse Matrix Library in C++ for High Performance Architectures," Proc. of the Second Object Oriented Numerics Conference, pp. 214-218, 1994.