PRINCIPLES OF CIRCUIT SIMULATION

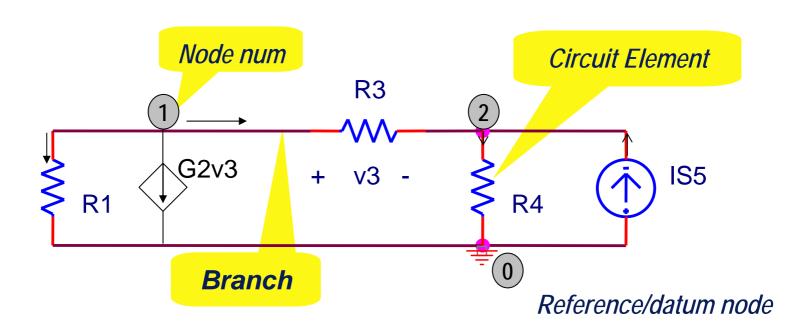
Lecture 7. Element Stamping

Guoyong Shi, PhD

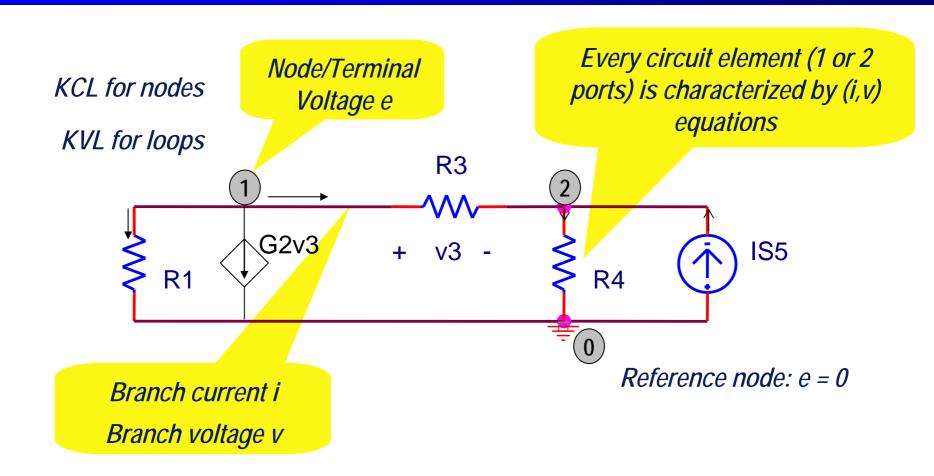
shiguoyong@ic.sjtu.edu.cn School of Microelectronics

Shanghai Jiao Tong University
Spring 2010

2010-9-27 Slide 1

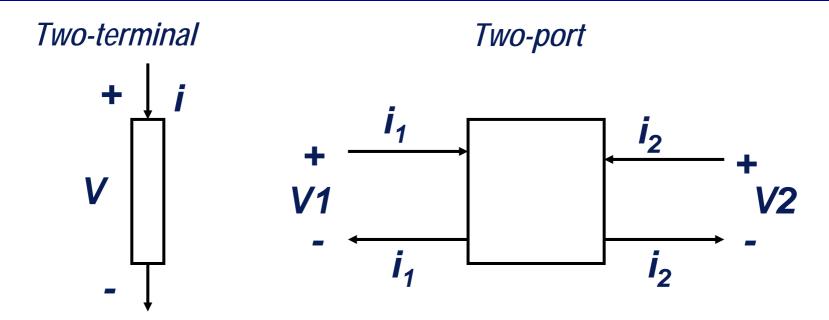

Outline

- Basic Concepts
 - KVL/KCL
 - Circuit Element Equations
- Sparse Tabular Analysis (STA)
- Nodal Analysis
- Modified Nodal Analysis (MNA)
- Part 1: Static Element Stamping


Formulation of Circuit Equations

- Kirchoff Current Law (KCL)
- Kirchoff Voltage Law (KVL)
- Circuit Element Equations

Basic Concepts


Basic Physical Quantities

Circuit Element Equations

- Mathematical models of circuit components are expressed in terms of ideal elements:
 - Inductors
 - Capacitors
 - Resistors
 - Current Sources
 - Voltage Sources
 - Two Ports
 - **–**
- Physical quantities current, voltage
- Some times, we need to use quantities: charge (nonlinear capacitor), flux (nonlinear inductor)

Reference Directions

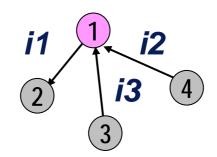
- i and v are branch currents and voltages, respectively
- (Default) For each branch, current is directed from higher potential to lower potential

Resistor

Resistors	Symbol	Voltage controlled	Current controlled	
Linear		i = (1/R) v	v = R i	
Nonlinear	+ V -	i = i (v)	v = v (i)	

Capacitor

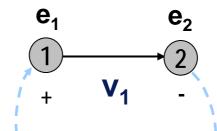
Capacitor	Symbol	Voltage controlled
Linear	i + V -	q = C v i = dq / dt Time-invariant C: i = C dv/dt
Nonlinear	+ V -	q = q (v) i = dq / dt Time-invariant C: i = C(v) dv/dt


Two-Port Elements

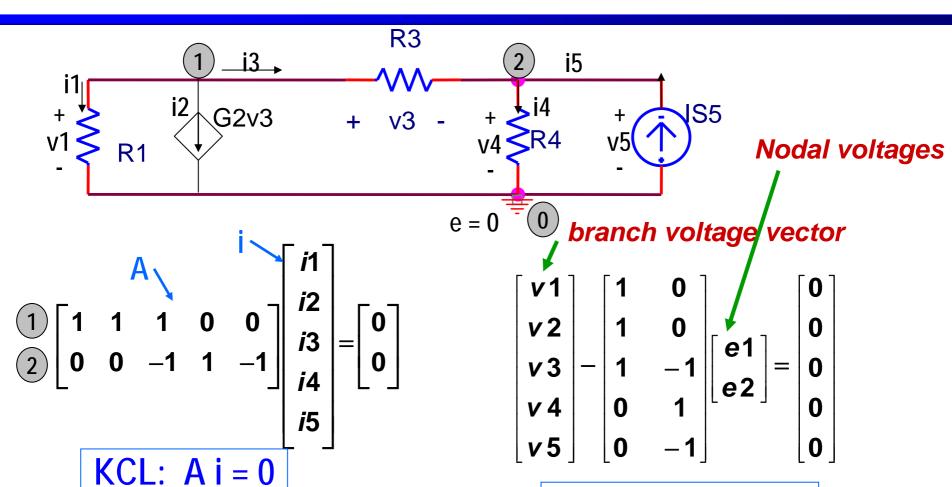
Controlled Sources	Symbol	linear	Nonlinear
vcvs	$\begin{array}{c c} + & \downarrow & \downarrow & \downarrow \\ V_c & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow &$	$v_k = E_k v_c$ $i_c = 0$	$v_k = v_k(v_c)$ $i_c = 0$
cccs	V_c F_k V_k	$i_k = F_k i_c$ $v_c = 0$	$i_k = i_k (i_c)$ $v_c = 0$

Topological Equations

KCL


(branch currents)
Current leaving a node is "+"

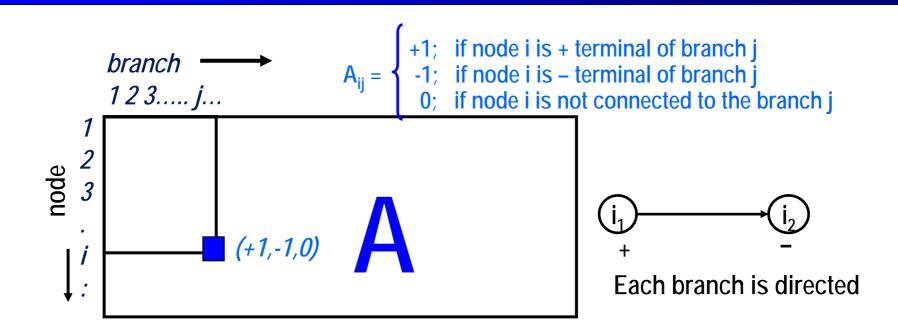
1 i1-i2-i3=0


KVL

(nodal voltages)
Voltage dropping is
"+"

 $V_1 + e_2 - e_1 = 0$

Matrix Forms



Tellegen's equation
$$i^Tv = 0$$
 (conservation of energy)

2010-9-27 Lecture 7 slide 12

 $v - A^T e = 0$

Incidence Matrix A

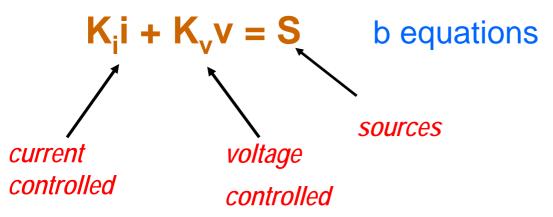
Properties

- A is unimodular (all minors equal to 1, -1, or 0)
- Only 2 nonzero entries in any column
- Sum of all rows of A is a zero vector.
 Thus, pick a node as the reference (ground) node

Equation Assembly

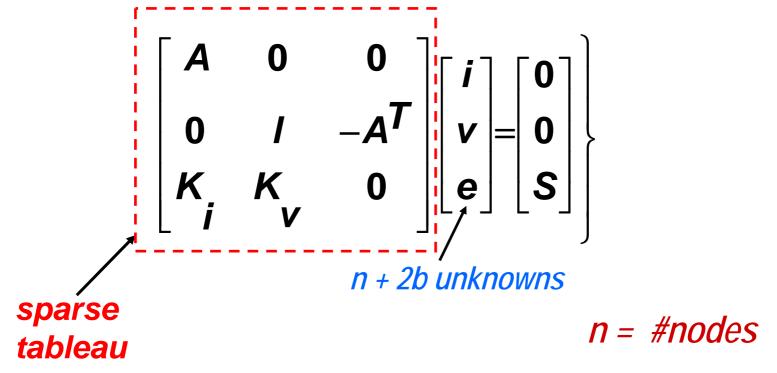
- How does a computer assemble equations from the circuit description (netlist)?
- Two systematic methods:
 - 1. Sparse Tableau Analysis (STA)

Used by early ASTAP simulator (IBM)


2. Modified Nodal Analysis (MNA)

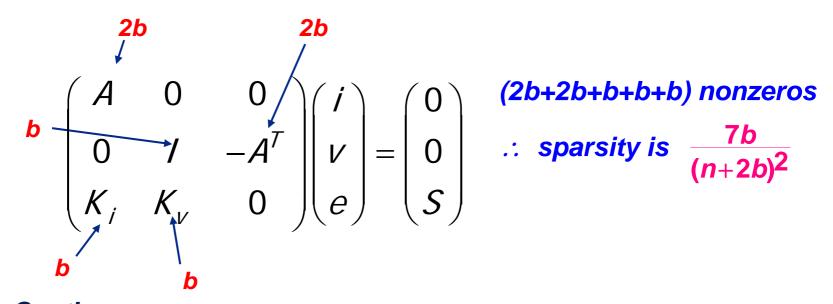
Used by SPICE simulators

Sparse Tableau Analysis (STA)


Proposed by (Brayton, Gustavson, Hachtel 1969-71)

- Write KCL : Ai = 0 n equations (one for each node)
- Write KVL: $\mathbf{v} \mathbf{A}^{\mathsf{T}} \mathbf{e} = \mathbf{0}$ b equations (one for each branch)
- Write Circuit Element (Branch) Equations:

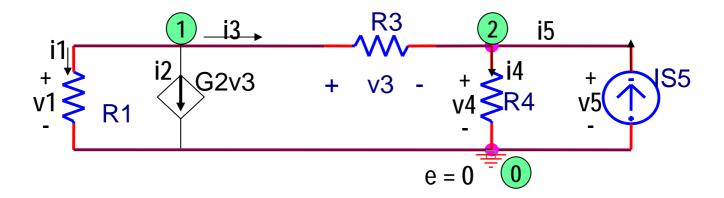
Sparse Tableau Analysis


Put all (n + 2b) equations together:

b = #branches

Advantages of STA

- STA can be applied to any (linearized) circuit
- STA equations can be assembled directly from netlist
- STA coefficient matrix is very sparse


Caution:

Sophisticated programming techniques and data structures are required for achieving the time and memory efficiency

- A more <u>compact</u> formulation
- In MNA, every element is in conductance form!

- We'll review the steps how MNA is done.
- Introduced by McCalla, Nagel, Rohrer, Ruehli, Ho (1975)

Nodal Analysis

Step 1: Write KCL:
$$i1 + i2 + i3 = 0$$
 (node 1)
-i3 + i4 - i5 = 0 (node 2)

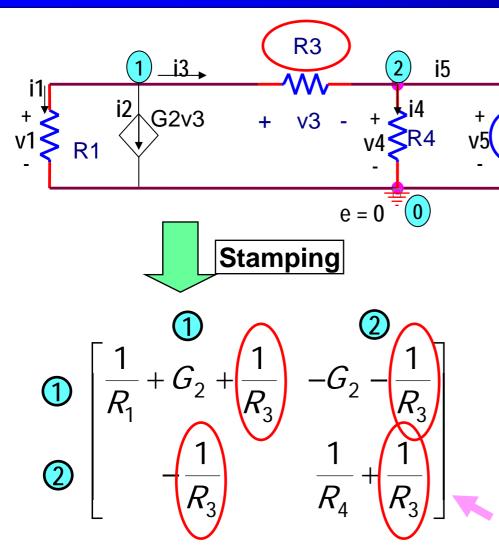
Step 2: Substitute branch equations to rewrite KCL in branch voltages:

$$\frac{1}{R1}v1+G2*v3+\frac{1}{R3}v3=0$$
 (1)

$$-\frac{1}{R3}v3 + \frac{1}{R4}v4 = IS5$$
 (2)

Nodal Analysis

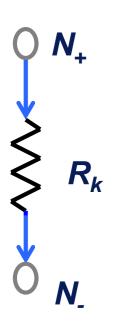
Step 3: Substitute branch voltages by nodal voltages (using KVL):


$$\frac{1}{R1}e1+G2(e1-e2)+\frac{1}{R3}(e1-e2)=0$$
 (1)
$$-\frac{1}{R3}(e1-e2)+\frac{1}{R4}e2=IS5$$
 (2)

Put in matrix form
$$\begin{bmatrix}
\frac{1}{R_1} + G_2 + \frac{1}{R_3} & -G_2 - \frac{1}{R_3} \\
-\frac{1}{R_3} & \frac{1}{R_4} + \frac{1}{R_3}
\end{bmatrix} \begin{pmatrix} e_1 \\ e_2 \end{pmatrix} = \begin{pmatrix} 0 \\ I_{S5} \end{pmatrix}$$

$$Y_n e = S$$

Regularity in MNA Matrix


- Each element contributes (in conductance form) only to the entries with row-column positions corresponding to the node numbers.
- Such a regular format is called a "stamp"

Coefficient matrix

Resistor Stamp

SPICE Netlist Format (R)

 R_k N_+ N- value_of_ R_k

VCCS Stamp

SPICE Netlist Format (VCCS)

$$G_k$$
 N_+ N - NC_+ NC - $value_of_G_k$

Similar to a resistor; but note that the row/col indices are different.

$$V_{c+}$$
 V_{c}
 V_{c-}
 N_{-}

Current Source Stamp

SPICE Netlist Format (Current Source)

ISK N+ N- value_of_I_k

Note the signs in this case!

$$\begin{pmatrix}
\vdots \\
-I_k \\
\vdots \\
+I_k \\
\vdots
\end{pmatrix}$$
N-
$$\begin{pmatrix}
\vdots \\
N_- \\
\vdots \\
N_-
\end{pmatrix}$$
N-

Right-Hand Side (RHS)

Relation between STA and NA

$$\begin{array}{cccc}
K_{i}^{-1} & \longrightarrow \begin{pmatrix} K_{i} & -K_{v} & 0 \\ 0 & I & -A^{T} \\ A & 0 & 0 \end{pmatrix} \begin{pmatrix} i \\ v \\ e \end{pmatrix} = \begin{pmatrix} S \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{bmatrix}
-A \\
0 \\
A
\end{bmatrix}
\begin{bmatrix}
I \\
-A^T \\
0 \\
A
\end{bmatrix}
\begin{bmatrix}
i \\
v \\
e
\end{bmatrix} = \begin{bmatrix}
K_i^{-1}S \\
0 \\
0
\end{bmatrix}$$

$$\begin{pmatrix}
I & -K_i^{-1}K_v & 0 \\
0 & I & -A^T \\
0 & AK_i^{-1}K_v & 0
\end{pmatrix}
\begin{pmatrix}
i \\
v \\
e
\end{pmatrix} =
\begin{pmatrix}
K_i^{-1}S \\
0 \\
-AK_i^{-1}S
\end{pmatrix}$$

Relation between STA and NA

$$-AK_{i}^{-1}K_{v} \begin{pmatrix} I & -K_{i}^{-1}K_{v} & 0 \\ 0 & I & -A^{T} \\ 0 & AK_{i}^{-1}K_{v} & 0 \end{pmatrix} \begin{pmatrix} i \\ v \\ e \end{pmatrix} = \begin{pmatrix} K_{i}^{-1}S \\ 0 \\ -AK_{i}^{-1}S \end{pmatrix}$$

Tableau Matrix

$$\begin{pmatrix}
I & -K_i^{-1}K_v & 0 \\
0 & I & -A^T \\
0 & 0 & AK_i^{-1}K_vA^T
\end{pmatrix} \begin{pmatrix}
i \\
v \\
e
\end{pmatrix} = \begin{pmatrix}
K_i^{-1}S \\
0 \\
-AK_i^{-1}S
\end{pmatrix}$$
After solving e , we get v , then get i .

2010-9-27 Lecture 7 slide 26

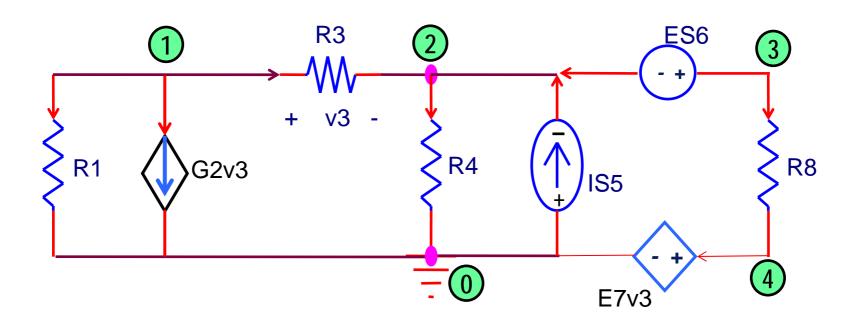
Nodal Analysis -- Advantages & Problem

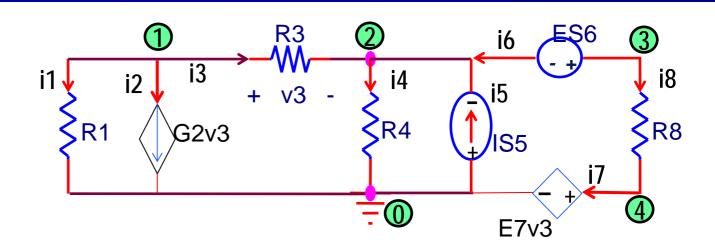
Advantages:

- Circuit equations can be assembled by stamping
- $\frac{Yn}{n}$ is sparse (but not as sparse as STA) and small $\frac{(nxn)}{n}$, smaller than STA $\frac{(n+2b^*n+2b)}{n}$
- Yn has non-zero diagonal entries and is often diagonally dominant

Problem:

Nodal Analysis cannot handle the following


Floating independent voltage source (not connected to ground)


- VCVS (E-ELEMENT)

- CCCS (F-ELEMENT)

- (VCCS ok!) (G-ELEMENT)

- CCVS (H-ELEMENT)

Step 1: Write KCL

$$i1 + i2 + i3 = 0 \tag{1}$$

$$-i3 + i4 - i5 - i6 = 0 (2)$$

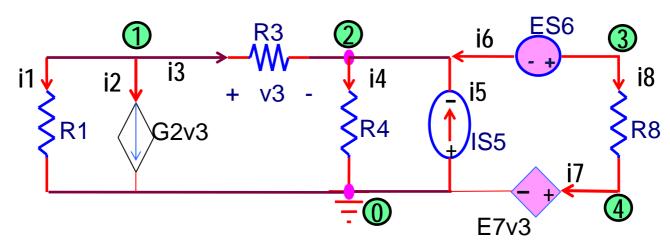
$$i6 + i8 = 0 \tag{3}$$

$$i7 - i8 = 0 \tag{4}$$

Step 2: Substitute branch currents by branch voltages

$$\frac{1}{R1}v1+G2v3+\frac{1}{R3}v3=0$$
 (1)

$$-\frac{1}{R3}v3 + \frac{1}{R4}v4 - i6 = IS5 \tag{2}$$


$$i6 + \frac{1}{R8}v8 = 0$$
 (3)

$$i7 - \frac{1}{R8}v8 = 0$$
 (4)

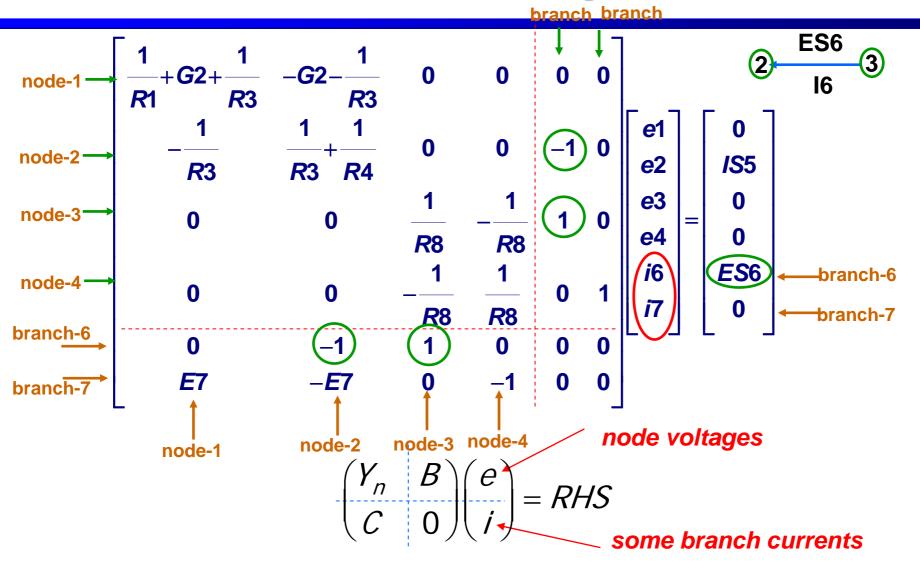
Step 3: Write down unused branch equations

$$V_6 = ES_6 \tag{4}$$

$$v_6 = ES_6$$
 (4)
 $v_7 - E_7 v_3 = 0$ (5)

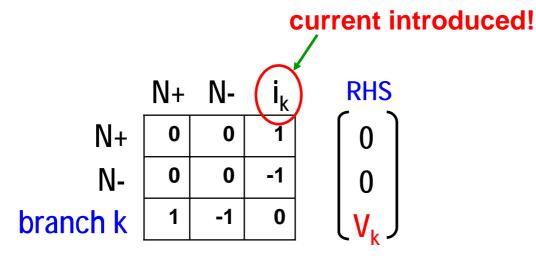
Step 4: Substitute branch voltages by nodal voltages

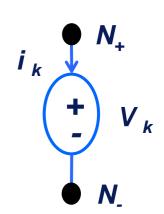
$$\frac{1}{R1}e1+G2(e1-e2)+\frac{1}{R3}(e1-e2)=0$$
 (1)


$$-\frac{1}{R3}(e1-e2)+\frac{1}{R4}e2-i6=IS5$$
 (2)

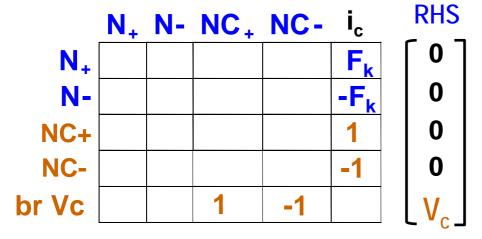
$$i6 + \frac{1}{R8}(e3 - e4) = 0$$
 (3)

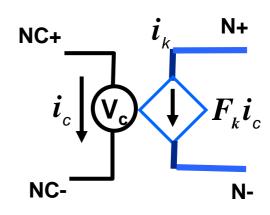
$$i7 - \frac{1}{R8}(e3 - e4) = 0$$
 (4)


$$(e3-e2) = ES6 \tag{5}$$


$$e4-E7(e1-e2)=0$$
 (6)

Voltage Source Stamp

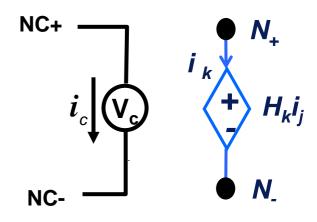

SPICE Netlist Format (Floating voltage source)



CCCS Stamp

SPICE Netlist Format (CCCS)

^{*} If 'Vname' is used as a CC for multiple times, it is stamped only once though!

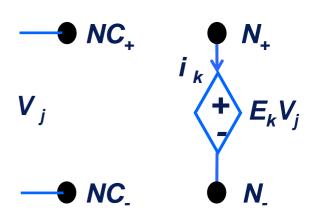

CCVS Stamp

DIIC

SPICE Netlist Format (CCVS)

H_K **N+ N- Vname value_of_H**_K **Vname NC+ NC- value**

	N_{+}	N-	NC ₊	NC-	i _k	i _c	KH2
N_{+}					1		
N-					-1		0
NC+						1	0
NC-						-1	
br-k	1	-1				-H _K	0
br-c			1	-1			LV _c _


^{*} If 'Vname' is used as a CC for multiple times, it is stamped only once though!

VCVS Stamp

SPICE Netlist Format (VCVS)

E_K N+ N- NC+ NC- value_of_E_K

	N_{+}	N-	NC ₊	NC-	i _k
N ₊					1
N-					<u>,</u>
NC ₊					
NC-					
br k	1	-1	-E _k	E _k	

General Rules for MNA

- A branch current is introduced as an additional variable for a voltage source or an inductor
- For current sources, resistors, conductance and capacitors, the branch current is introduced only if
 - Any circuit element depends on that branch current; or
 - The branch current is requested as an output.

Modified Nodal Analysis (MNA)

Advantages of MNA

- MNA can be applied to any circuit
- MNA equations can be assembled "directly" from a circuit description (e.g. netlist)

Problem

 Sometimes zeros appear on the main diagonal; causing some principle minors to be singular (numerical instability.)

Summary

- KVL/KCL + Circuit Element Equations
- Equations formulation: STA and MNA
- MNA was implemented in most simulators (SPICE)
- Element stamps
- A key observation:
 - Circuit matrix structure will not change! (exploited by SPICE for speedup – symbolic factorization)

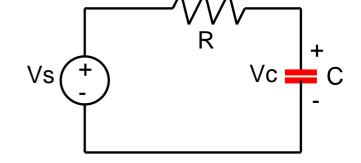
Assignment 3

- Implement a netlist parser that reads a simple netlist with the following elements
 - -R
 - Vsource, Isource
 - VCVS, CCCS, VCCS, CCVS

Print the stamps and the RHS with row and column indices.

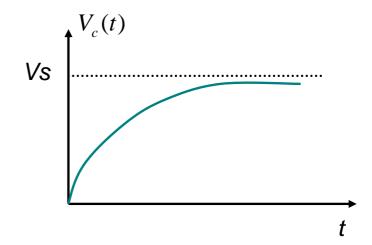
PRINCIPLES OF CIRCUIT SIMULATION

Part 2. Dynamic Element Stamping


2010-9-27 Slide 42

Outline

- Discretization Formulas for d/dt
- Element Stamps for Linear Capacitors and Inductors


Circuit with dynamic element

$$RC\frac{dV_{c}}{dt} + V_{c} = V_{s}, \quad V_{c}(0) = 0$$

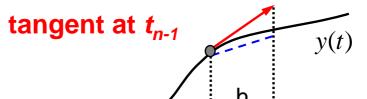
$$V_{c}(t) = V_{s} \left(1 - e^{-\frac{t}{\tau}}\right), \quad \tau = RC$$

• How to solve it numerically?

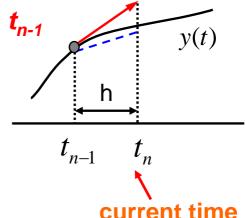
Numerical Solution

$$\frac{dV}{dt} + V = V_s, \quad V(0) = 0 \qquad \text{Assuming } \tau = RC = 1$$

Replace the <u>derivative</u> by <u>difference</u>


$$\frac{V(t+h)-V(t)}{V(t)-V(t)}+V(t)=V_{s}$$
 h = time step (small)

There are many ways to do discretization.

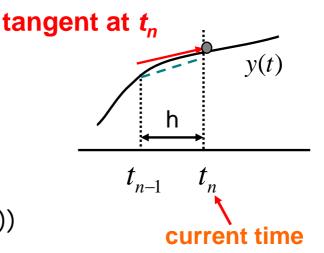

$$V(t+h) = V(t) + h[V_s - V(t)]$$

Becomes iteration

Forward Euler (FE)

$$\dot{y}(t) = \frac{dy(t)}{dt} = f(y(t))$$

$$\frac{y(t_n) - y(t_{n-1})}{h} \approx y(t_{n-1}) = f(y(t_{n-1}))$$


$$y(t_n) = y(t_{n-1}) + h \cdot f(y(t_{n-1}))$$

Direct iteration; (no linear / nonlinear solve involved)

Backward Euler (BE)

$$\dot{y}(t) = \frac{dy(t)}{dt} = f(y(t))$$

$$\frac{y(t_n) - y(t_{n-1})}{h} \approx \dot{y}(t_n) = f(y(t_n))$$

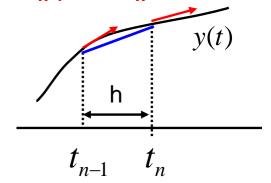
$$y(t_n) = y(t_{n-1}) + h \cdot f(y(t_n))$$

 $y(t_n)$ appears on both sides of the equation; need to solve $y(t_n)$ by iterations if $f(\cdot)$ is nonlinear.

FE and BE

Forward Euler: $y(t_n) = y(t_{n-1}) + h \cdot f(y(t_{n-1}))$

Backward Euler: $y(t_n) = y(t_{n-1}) + h \cdot f(y(t_n))$


- Although B.E. requires more computation, it is preferred in practice because it is more <u>numerically stable</u>.
- Will discuss on this later.

Trapezoidal Rule (TR)

tangents at both t_{n-1} and t_n

$$\dot{y}(t) = \frac{dy(t)}{dt} = f(y(t))$$

$$\frac{y(t_n) - y(t_{n-1})}{h} \approx \frac{1}{2} \left[y(t_n) + y(t_{n-1}) \right]$$

slope of secant

averaged tangent

$$\frac{y(t_n) - y(t_{n-1})}{h} \approx \frac{1}{2} [f(y(t_n)) + f(y(t_{n-1}))]$$

$$y(t_n) = y(t_{n-1}) + \frac{h}{2} [f(y(t_n)) + f(y(t_{n-1}))]$$

Again, requires solving $y(t_n)$ from a set of nonlinear equations

FE, BE and TR

$$\dot{y}(t) = \frac{dy(t)}{dt} = f(y(t))$$

Forward Euler:

$$y(t_n) = y(t_{n-1}) + h \cdot f(y(t_{n-1}))$$

Backward Euler:

$$y(t_n) = y(t_{n-1}) + h \cdot f(y(t_n))$$

Trapezoidal Rule:
$$y(t_n) = y(t_{n-1}) + \frac{h}{2}[f(y(t_n)) + f(y(t_{n-1}))]$$

 Trapezoidal rule has even better numerical property than B.E.

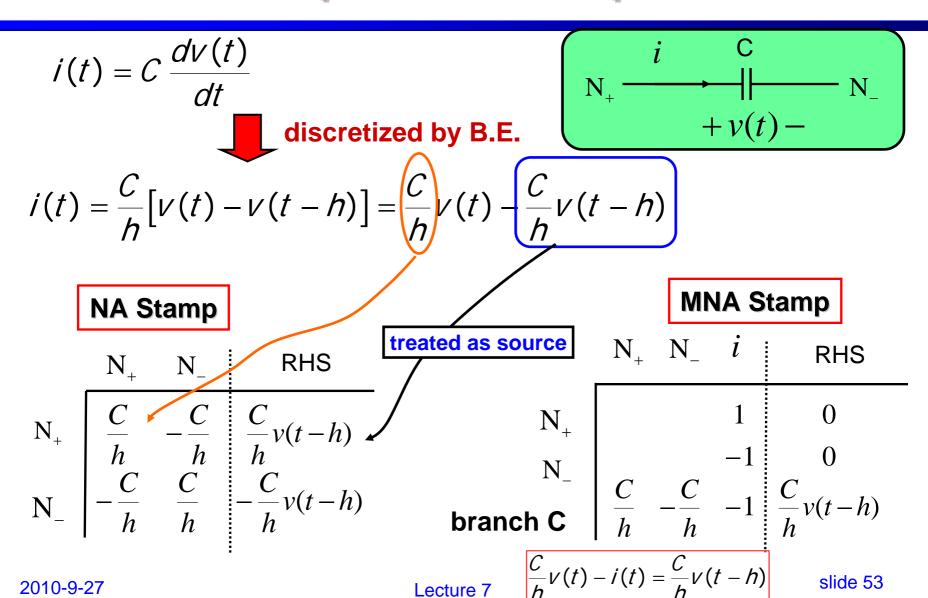
Interpretation of Trapezoidal Rule

Trapezoidal rule comes from <u>numerical integration</u> – computing the area under a curve

$$\dot{x}(t) = g(t)$$
 area under the curve
$$x(t_n) = x(t_{n-1}) + \int_{t_{n-1}}^{t_n} g(\tau) d\tau$$

$$x(t_n) \approx x(t_{n-1}) + \frac{h}{2} \left[g(t_n) + g(t_{n-1}) \right]$$
 approximated by a trapezoidal

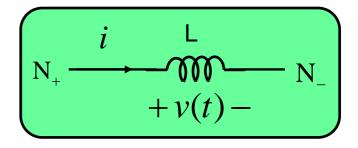
$$\frac{x(t_n) - x(t_{n-1})}{h} \approx \frac{1}{2} \left[\dot{x}(t_n) + \dot{x}(t_{n-1}) \right]$$
Trapezoidal Rule



g(t)

Stamps of Dynamic Elements

- Stamps for dynamic elements can be derived from a discretization method:
 - Capacitor (C)
 - Inductor (L)
 - Others ...


Capacitor Stamp

Inductor Stamp

discretized by B.E.

$$v(t) = L \frac{di}{dt} \approx L \frac{i(t) - i(t-h)}{h}$$

$$V(t) - \frac{L}{h}i(t) = -\frac{L}{h}i(t-h)$$

$$N_{+} N_{-} i$$
 RHS
$$\begin{array}{c|cccc}
 & 1 & 0 \\
 & -1 & 0 \\
\hline
 & 1 & -\frac{L}{h} i(t-h)
\end{array}$$

branch L

(must introduce current)

MNA Stamp

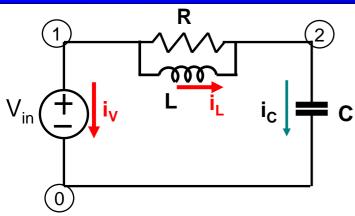
Stamps for C & L

NA Stamp for C

	$N_{\scriptscriptstyle +}$	N_{-}	RHS
$\mathbf{N}_{\scriptscriptstyle{+}}$	$ \frac{\frac{C}{h}}{-\frac{C}{h}} $	$-\frac{C}{h}$ $\frac{C}{h}$	$ \frac{C}{h}v(t-h) - \frac{C}{h}v(t-h) $

MNA Stamp for C

	N_{+}	N_	i	RHS
$N_{_{+}}$			1	0
N			-1	0
	$\frac{C}{h}$	$-\frac{C}{h}$	-1	$\frac{C}{h}v(t-h)$


MNA Stamp for L

	$N_{+} N_{-}$	i	RHS
$N_{\scriptscriptstyle +}$		1	0
N_{-}		-1	0
	1 -1	$-\frac{L}{h}$	$-\frac{L}{h}i(t-h)$

Note that: Stamps for C or L depend on the discretization method used!

slide 55

A Circuit Example

$$V_L(t) = L \frac{di_L(t)}{dt}$$

$$V_1(t) - V_2(t) = \frac{L}{h} [i_L(t) - i_L(t-1)]$$

branch L

branch V_{in}

$$i_c(t) = \frac{C}{h} [v_C(t) - v_C(t-1)]$$

$$= \frac{C}{h} [v_2(t) - v_0(t)] - \frac{C}{h} [v_2(t-1) - v_0(t-1)]$$

				$\overline{}$	\wedge	ı
	0	1	2	(3)	(4)	RHS
)	$\frac{C}{h}$	0	$-\frac{C}{h}$	0	-1	$-\frac{C}{h}V_{c}(t-h)$
	0	$\frac{1}{R}$	$-\frac{1}{R}$	1	1	0
2	$-\frac{C}{h}$	$-\frac{1}{R}$	$\left(\frac{1}{R} + \frac{C}{h}\right)$	-1		$\frac{C}{h}v_{c}(t-h)$
3	0	1	-1	$-\frac{L}{h}$		$-\frac{L}{h}i_{L}(t-h)$
	-1	1			-	$V_{_{in}}$

Assignment 4

• Derive the stamps for C and L using the Trapezoidal Rule (both in MNA).

Classical Papers

- 1. G.D. Hachtel, R.K. Brayton and F.G. Gustavson, "The sparse tableau approach to network analysis and design," *IEEE Trans. Circuit Theory*, vol.CT-18, Jan. 1971, pp. 101-119.
- 2. C.W. Ho, A.E. Ruehli and P.A. Brennan, "The modified nodal approach to network analysis", *IEEE Trans. Circuits and Systems*, CAS-22, June 1975, pp. 504-509