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OutlineOutline
• Basic constructs
• Model & Device Classes
• Device loading
• Object-oriented programming
• Model Compiler
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A Detailed Simulator FlowA Detailed Simulator Flow
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Node versus TerminalNode versus Terminal
• “Node” is a circuit 

attribute: 
Each node is connected 
to a list of devices.

• “Terminal” is a device 
attribute:

Each device has a list 
of terminals.

• A device terminal
becomes a circuit node
when it is connected in a 
circuit.

• Multiple device terminals
may share the same 
node.

• Each device terminal
identifies a branch 
current.
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Node versus DeviceNode versus Device

• Each Node Object manages 
a list of devices connected 
to it.

• Each Device Object
manages a list of nodes as 
its terminals.

• Such information is directly 
used in the MNA matrix 
stamping.
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ExampleExample
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Simulator ConstructionSimulator Construction
• The simulator should manage the following lists:

List of models
List of devices
List of analyses analysis[0]

analysis[1]
analysis[3]
analysis[4]
analysis[5]
analysis[6]
analysis[7]
analysis[8]

analysis type

device[0]
device[1]
device[3]
device[4]
device[5]
device[6]

device type

model[0]
model[1]
model[3]
model[4]
model[5]
model[6]

model type

mod_inst[0]

mod_inst[2]

mod_inst[1]

device[0]
device[1]
device[3]
device[4]
device[5]
device[6]

device type

device[0]
device[1]
device[3]
device[4]
device[5]
device[6]

device type
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Model & Device ClassesModel & Device Classes
ModelModel

Model_Res

Model_MOS3Model_MOS1

Model_Vsrc

Model_Ind

Model_Isrc

Model_Cap

Model_MOS2

DeviceDevice

Res

MOS3MOS1

Vsrc

Ind

Isrc

Cap

MOS2

······

······

MOSMOS
Just need one class 
for MOS device

Multiple MOS models
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Device InstancesDevice Instances
• Device instances are divided into two 

categories:
1. Instances without models
2. Instances with models

These two types of instances are managed 
by the Circuit Object.
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Device Instances without ModelDevice Instances without Model

Device instances 
without models

D_type[0]
D_type[1]
D_type[3]
D_type[4]
D_type[5]
D_type[6]
D_type[7]
D_type[8]

Device type

Managed by the Circuit object

Cap
Res Res

IndInd

Spice takes a model-driven 
device instantiating strategy.

Spice creates a default model 
for the same type devices 
without a model.

This means all device instances 
have models.
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Device Instances with ModelDevice Instances with Model
ModelModel

Model_ResModel_Res

Model_MOS3Model_MOS1

Model_Vsrc

Model_Ind

Model_Isrc

Model_Cap

Model_MOS2

······

Model instances

Model_Res_Inst_1Model_Res_Inst_1

Model_Res_Inst_2Model_Res_Inst_2

Model_Res_Inst_3Model_Res_Inst_3

ResRes

Res

Res Res

Device instances with models

Model_BSIM1 Model_BSIM3
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Links among Models & Devices Links among Models & Devices 

device[0]
device[1]
device[3]
device[4]
device[5]
device[6]

device type

model[0]
model[1]
model[3]
model[4]
model[5]
model[6]

model type

mod_inst[0]

mod_inst[2]

mod_inst[1]

device[0]
device[1]
device[3]
device[4]
device[5]
device[6]

device type

device[0]
device[1]
device[3]
device[4]
device[5]
device[6]

device type

Including
defaultdefault
models
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ModelModel--based Device Instancesbased Device Instances
• If a device does not have a model, a default model is 

created for it.
• The same type devices without model share the same 

default model.
• The parameters for a default model are not assigned.
• Spice uses XXXtemp() function to evaluate the stamp, 

which uses the temperature information.
If a default model, the model parameters are not used at all. 
Only the lumped parameter given in the netlist is used for 
evaluation.
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Analysis ClassesAnalysis Classes

analysis[0]
analysis[1]
analysis[3]
analysis[4]
analysis[5]
analysis[6]
analysis[7]
analysis[8]

analysis type

AnalysisAnalysis

Analysis_DC

Analysis_NoiseAnalysis_OP

Analysis_Disto

Analysis_Tran

Analysis_Sens

Analysis_AC

Analysis_PZ

arranged in listarranged in list
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Models and Devices Models and Devices 
• A netlist may have a list of devices (identified by 

device types)
• Each type of device may have a list of models
• Each device model may have a list of instances

* This data structure will be used during circuit loading!

cktckt M_type[0]M_type[0] M_type[1]M_type[1] M_type[typeM_type[type]]

M_instM_inst--00

M_inst-1

M_inst-2

D_inst_0D_inst_0

D_inst_1D_inst_1

D_inst_2D_inst_2 D_inst_0D_inst_0

D_inst_1D_inst_1
D_inst_0D_inst_0

M_inst_0M_inst_0

M_inst_1

M_inst_2
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Referencing Model and InstancesReferencing Model and Instances
• Each model instance may be linked with a list of 

device instances.
• Each device instance has a back pointer pointing at 

the belonging model instance.

MODELMODEL

dev instdev inst--11 dev instdev inst--22 dev instdev inst--kk......

* One model supports multiple devices.

back link
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Device LoadingDevice Loading

cktckt mod type[0] mod type[1] mod type[K ]

mod instmod inst--00
dev inst-0

dev inst-1

dev inst-2 dev inst-0
dev inst-1

dev inst-0
Each instant is a 

physical
device in circuit.

* This whole structure is scanned during 
device loading.

mod instmod inst--11

mod instmod inst--22

mod instmod inst--00

mod instmod inst--11

mod instmod inst--22

dev inst-0
dev inst-1

dev inst-2 dev inst-0
dev inst-1

dev inst-0
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Device ModelsDevice Models
• Semiconductor devices are described by a 

set of analytical equations.
• One model may take several hundreds of 

pages (BSIM3/4).
• Can be written in description language –

Verilog-AMS.
• Have to be translated into C/C++ code.
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Typical Modeling FlowTypical Modeling Flow

Vendor
B

Vendor
D

Vendor
C

Device
Model

Developer
Designer

Foundry

Vendor
A

Vendor
E

Model Parameter Extraction New Effect Found

New Effect Found

Repeat...

Repeat...

Independent implementations

Verified Design
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Model ImplementationModel Implementation
• Refer to C implementation of model equations;

including derivative computations (Jacobian matrix, ...)
• Model implementation is more difficult, time 

consuming and error-prone than model creation 
(writing math eqns).

• Simulator vendors have to develop their own 
implementations (IP issues)

• Model implementation is also costly.

• Designers have less control over models.
• Designers may identify flaws in models while 

using simulators.
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Designers Want ...Designers Want ...
• Accurate and robust models.
• Models covering all cases likely to appear in 

real design.
• Models that can be simulated efficiently.

• Sometimes want to modify the model 
equations in their own favor ...
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Model Compiler Can Help !Model Compiler Can Help !
A Model Compiler is a CAD tool that supports automatic

implementation of compact device model.

Model CompilerInput in 
Compact 

Description

Output (ready 
for simulator)

1. Input: compact device models in a description language -
Verilog-AMS

2. Output: device code in C/C++ that can be directly compiled in 
Spice-like simulators.
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Convert to C code

Device Model Implementation Flow Device Model Implementation Flow 
New device & Equations

Initial coding in MATLAB

Purchase by design company & qualification

Release new simulator

Designers use new models

Install & test model in simulator

Update new effectsUpdate new effects

Model Compiler

New modificationNew modification
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INTRODUCTION TO CIRCUIT SIMULATIONINTRODUCTION TO CIRCUIT SIMULATION

APPENDIX APPENDIX ----
ObjectObject--Oriented ProgrammingOriented Programming
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ObjectObject--Oriented ProgrammingOriented Programming
• Data and functions associated with the same 

object are collected in one class
So-called “encapsulation”
Provides modularity of code.
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Use PolymorphismUse Polymorphism
• Define object interface in the base classes 

using virtual functions in C++ for 
polymorphism.

• Implementation of objects defined in the 
derived classes.

• Better code readability / flexibility, and 
• Easier code management.

• Polymorphism is very suitable for model 
interfacing and device methods.
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Modular DevelopmentModular Development
• Make the numerical methods, modeling, and 

analysis independent from each other as 
much as possible. 

• Make the Solver Module independent of the 
analysis algorithms; so that it is easier to 
update the solver.

• Make device models Independent of the 
simulator analysis engine;
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