Lecture 6.
Simulator Architectural Design

Guoyong Shi, PhD
shiguoyong@ic.sjtu.edu.cn
School of Microelectronics
Shanghai Jiao Tong University
Spring 2010

2010-9-27 Slide 1

Qutline

 Basic constructs

e Model & Device Classes
 Device loading
 Object-oriented programming
« Model Compiler

2010-9-27 Lecture 06 slide 2

A Detalled Simulator Flow

-

—

Netlist

Higher-level
Description

Language

2010-9-27

Parser
(Save all ckt info
to a symbol table;
Check circuit integrity;
Report error, etc.)

Lecture 06

Prepare for Analysis
(Create void stamps
for all devices)

U

4)

Run Analysis
(Fill stamps according

to analysis type)

. /

U

Save and
Present
Simulation Result

slide 3

2010-9-27

Node versus Terminal

Lecture 06

“Node” I1s a circuit
attribute:

= Each node is connected
to a list of devices.

“Terminal” is a device
attribute:

= Each device has a list
of terminals.

A device terminal
becomes a circuit node
when it is connected in a
circuit.

Multiple device terminals
may share the same
node.

Each device terminal
identifies a branch
current.

slide 4

2010-9-27

Node versus Device

Lecture 06

Each Node Object manages
a list of devices connected
to it.

Each Device Object
manages a list of nodes as
Its terminals.

Such information is directly
used in the MNA matrix
stamping.

slide 5

Example

class DEVICE

-

AN

class RES class CAP class IND
R1 C1 L1
R2 C2 L2
R3 C3 L3
Instances Instances

2010-9-27

Lecture 06

slide 6

Simulator Construction

 The simulator should manage the following lists:

= |List of models
= List of devices

/

/ mod inst[2]
device[0]

n I lysis[0
List of analyses od et T i) :Ezlyz:zm
device[3] y .
device[0l| [device[4] analys!s[s]
mod nst[0] device[lll [device[s]| —[BRANSISIA]
devicel3[[devicel6 analysis[5]
model[0] device[o]] |device[4] analysis|6]
model[1] / device[1]| [|device[5] device type |aNalySIS[7]
model[3] device[3]| [device[6]] | analysis[8]
model[4] device[4] |
model[5] g:x:gg[g] device type analysis type
model[6 ‘
model type device type
) slide 7

2010-9-27 Lecture 06

Model & Device Classes

Model Res Model_Cap Model_Ind
---------------- R ——
(:/Model MOSY | fodel MOS2 Model MOS3 v
Model Vsrc Model_Isrc
...... Res Cap Ind
\ AN
MOS1 & \ MOS3
MOS MOS\Z
Just need one class v \
for MOS device \/src Isrc

2010-9-27 Lecture06 | rrreree slide 8

Device Instances

e Device instances are divided into two
categories:
1. Instances without models
2. Instances with models

= These two types of instances are managed
by the Circuit Object.

2010-9-27 Lecture 06 slide 9

Device Instances without Model

Managed by the Circuit object

N\
p

2010-9-27

Spice takes a model-driven

device instantiating strategy.

Spice creates a default model

Lecture 06

D_type[0] ;—tRRes [~ Res [~ for the same type devices
D_type[1}—liCap — without a model.
D type[3] Ind —{ Ind |»
D type[4] This means all device instances
D type[5] \ have models.
D_type[6]
D_type[7] Device instances
D_type[8] without models
Device type
K J

slide 10

Device Instances with Model

Model instances

S Vi odel_Re Model_Cap Model_Ind

Res 1 Res {'7“/ Model_Res_Inst_1 Model_MOS1 \ > Model_MOS3

Model MOS2
<+— Res Model_Res_Inst_2 \
Model Vsrc

| Model_Isrc
«| Res [+ Res ——YENEMRSE]

\ l / Model BSIM1 Model_BSIM3

B

S _———

Device instances with models

2010-9-27

Lecture 06 slide 11

Links among Models & Devices

Including
default
models

model[0]

model[1]

model[3]

model[4]

model[5]

model[6

2010-9-27

model type

mod inst[2]
device[0]
mod inst[1] device[l]
: device[3]
device[0l |device[4]
mod inst[0] ggx:ggg} device[5]
device[6]
device[0] device[4] .
device[1] device[5] device type
device[3]| [device[6]] |
device[4] .
device[5] device type

device type

Lecture 06

slide 12

Model-based Device Instances

If a device does not have a model, a default model is
created for it.

The same type devices without model share the same
default model.

« The parameters for a default model are not assigned.

o Spice uses XXXtemp() function to evaluate the stamp,
which uses the temperature information.
» |f adefault model, the model parameters are not used at all.

= Only the lumped parameter given in the netlist is used for
evaluation.

2010-9-27 Lecture 06 slide 13

Analysis Classes

Analysis_DC Analysis_AC Analysis_Tran
i \ }Analysis_Noise
Analysis_OP Analysis PZ
Analysis_Disto Analysis_Sens
2010-9-27 Lecture 06

arranged in Ii%

lanalysis[0]
analysis|[1]
analysis[3]
lanalysis[4]
analysis|[5]
analysis[6]
analysis|[7]
analysis|8]

|

analysis type

slide 14

* A netlist may have a list of devices (identified by

Models and Devices

device types)
« Each type of device may have a list of models

« Each device model may have a list of instances

D_inst_Zi

ckt

M_type(0]

— M _type[l]

—) EENI

D_inst_Oi

}

VIRIISt=0)

!

D_inst_li

D_inst_li

M inst-1

D_inst_Oi

v

M inst-2

D inst 0

* This data structure will be used during circuit loading!
2010-9-27

Lecture 06

M_typel[type]

!

VIRSTR0

!

M inst 1

M inst 2

slide 15

Referencing Model and Instances

« Each model instance may be linked with a list of

device instances.

« Each device instance has a back pointer pointing at

the belonging model instance.

"~ ~hack link

N
N
~

»| dev inst-1 | devinst-2 [— - —| dev inst-k

* One model supports multiple devices.

slide 16

2010-9-27 Lecture 06

¥

Device Loading

dev inst-2

Each instant is a
physical
device in circuit.

2010-9-27

ckt mod type[0] —-|m0d type[l]|—> ===+ | mod type[K] —
o mod inst-0 mod‘;nst-o
dev inst-0 l saEmEEmEEEEE m |
evinst-1| .~ od inSt'l e _ modlinst-l
dev ir‘vs,/tjev > i15dl 1552 dev inst-2 o r:;(iev ms: mod inst-2
dev inst-0 dev inst-0

* This whole structure is scanned during
device loading.

Lecture 06

slide 17

Device Models

e« Semiconductor devices are described by a
set of analytical equations.

e One model may take several hundreds of
pages (BSIM3/4).

e Can be written in description language —
Verilog-AMS.

e Have to be translated into C/C++ code.

2010-9-27 Lecture 06 slide 18

Typical Modeling Flow

Repeat...

New Effect Found

Model Parameter Extraction

Designer

Verified Design

\ 4

Repeat...
New Effect Found /
F

oundry

2010-9-27 Lecture 06 slide 19

Model Implementation

 Refer to C implementation of model equations;
* including derivative computations (Jacobian matrix, ...)

« Model implementation is more difficult, time
consuming and error-prone than model creation
(writing math eqgns).

« Simulator vendors have to develop their own
Implementations (IP issues)

« Model implementation is also costly.

e Designers have less control over models.

 Designers may identify flaws in models while
using simulators.

2010-9-27 Lecture 06 slide 20

Designers Want ...

e Accurate and robust models.

« Models covering all cases likely to appear in
real design.

« Models that can be simulated efficiently.

« Sometimes want to modify the model
equations in their own favor ...

2010-9-27 Lecture 06 slide 21

1.

Model Compiler Can Help !

A Model Compiler is a CAD tool that supports automatic
Implementation of compact device model.

Input in : Output (ready
Compact ::> Model Compiler :> for simulator)
Description

Input: compact device models in a description language -
Verilog-AMS

Qutput: device code in C/C++ that can be directly compiled in
Spice-like simulators.

2010-9-27 Lecture 06 slide 22

Device Model Implementation Flow

[New device & Equations] <

‘ {Initial coding in MATLAB]-',

New modification = T o ot |
| > - : Update ne
{ Convert to C code } it _

[Install & test model in simulator }

A 4

[Release new simulator]

A 4

{ Purchase by design company & qualification }

A 4

2010-9-27 { Designers use new models }

slide 23

APPENDIX --
Object-Oriented Programming

2010-9-27 Slide 24

Object-Oriented Programming

 Data and functions associated with the same
object are collected in one class
» So-called “encapsulation”
= Provides modularity of code.

2010-9-27 Lecture 06 slide 25

Use Polymorphism

 Define object interface in the base classes
using virtual functions in C++ for
polymorphism.

 Implementation of objects defined in the
derived classes.

e Better code readability / flexibility, and

e Easier code management.

 Polymorphism is very suitable for model
Interfacing and device methods.

2010-9-27 Lecture 06 slide 26

Modular Development

« Make the numerical methods, modeling, and
analysis independent from each other as
much as possible.

« Make the Solver Module independent of the
analysis algorithms; so that it is easier to
update the solver.

« Make device models Independent of the
simulator analysis engine,

2010-9-27 Lecture 06 slide 27

	Lecture 6. �Simulator Architectural Design
	Outline
	A Detailed Simulator Flow
	Node versus Terminal
	Node versus Device
	Example
	Simulator Construction
	Model & Device Classes
	Device Instances
	Device Instances without Model
	Device Instances with Model
	Links among Models & Devices
	Model-based Device Instances
	Analysis Classes
	Models and Devices
	Referencing Model and Instances
	Device Loading
	Device Models
	Typical Modeling Flow
	Model Implementation
	Designers Want ...
	Model Compiler Can Help !
	Device Model Implementation Flow
	APPENDIX --�Object-Oriented Programming
	Object-Oriented Programming
	Use Polymorphism
	Modular Development

