简 历

姓名	中文	5	张 国臻	性别		男	46 岁
毕业院校 及专业、学位		中文	日本名古屋大学 结晶材料工学博士				
		英文	Nagoya University Japan Crystalline Materials Science Ph.D				
		中文	日本合成橡胶股份有限公司材料研究所 主任研究员				
回国前工作	平位及駅分	英文	JSR Co., Ltd. Japan, Major Rearcher				
现任职单位名称		浙江沿	清华柔性电子技术研究院		职务(岗位)		PI研究员
申以	箱	zhan	ngguozhen4364@163.com		电话		13915701972
	学历()	加注英文	(1) 时间		国家	院校	专业
	本利	斗	1993. 9–19	97. 8	中国	北京理工力	大学 精细化工
教育经历 (从本科填起)	硕士(Master)	1999. 4–200	01. 3	日本	名古屋大学	结晶材料
	博士(Ph. D)	2001. 4-200	04. 3	日本	名古屋大学	结晶材料
工作经历(兼职请注明)	职务(加注英文	た) 时	间	国家	单位	(英文)
	JST 研究员		2004. 4-	2005. 3	日本 东京都立大学应用化(Tokyo Metropolitan Unive		
	研究员 (Rearcher)		2005. 4-	2009. 12	日本	凸版印刷股份有限公(Toppan Printing Co., Ltd	
	主事研究员 (Major Rearcher		•	014. 12	日本 日本合成橡胶股份有限分(JSR Co., Ltd.		·
	研发总监((R8		2015.1 - 2 Deputy Directo		中国 (ZHANGJIAGA		光电材料有限公司 NICS MATERIAL Co.,Ltd.)
	PI	研究员	2018. 5-至	今	中国	浙江清华柔州	生电子技术研究院

专长及代表性成果

领导(参与)过的主要项目

起止时间	项目性质和来源	经费总额	参与人数	具体职位、任务及成果
2005-2007	新型防反增透光	20 亿日元	4人(不包含生	研究员,研发,工艺担当
	学薄膜及光学保		产,营销人数)	担任材料开发,生产工艺论
	护薄膜的开发			证,产品性能评价,量产移交
	(凸版印刷重点			任务。世界首次用涂布方式大
	开发项目)			规模生产100纳米左右厚度的
				光学减反增透薄膜。
2007-2008	纳米硅胶薄膜的	2亿日元	1人(不包含生	研究员,研发,工艺担当
	开发(凸版印刷		产及分析人数)	担任材料开发,生产工艺论
	重点开发项目)			证,产品性能评价任务。公司
				首次开发成功的大规模量产
				的功能层厚度为1-2纳米的医
				疗行业产品。
2008-2009	ITO 薄膜的开发	10 亿日元	6人(不包含生	研究员,研发,工艺担当
	(凸版印刷重点		产,营销人数)	担任生产工艺论证,产品性能
	开发项目)			评价,量产移交任务。设计的
				光学功能结构被业界广泛采
				用,该设计沿用至今,尚无更
0010 0010	1-0 + 0+ 11 - 1	20 /2 7 7	05 1 1-7 5	新。
2010-2013	ITO 薄膜的开发	80 亿日元	25 人(不包含	, , , , , , , , , , , , , , , , , , , ,
	(JSR 重点开发		生产,营销人	·
	项目)		数)	评价,涂布技术指导任务。开
				发出的产品及技术转移给日
				东电工,除 incell 技术以外,
				该产品及技术为世界各大移 动终端厂商的中高端产品所
				一
2013-2014	光电薄膜材料开	2亿日元	8人(不包含生	
	发及量产(JSR		产,营销人数)	担任材料开发,评价技术指导
	传统项目的延		, , , , , , , , , , , , , , , , , , , ,	任务。开发出的高、低折射率
	伸)			的光学纳米复合材料, 折射率
				上下限指标保持业界记录。开
				发的纳米复合材料,纳米二氧
				化硅粒子填充率保持业界记
				录。
2015-2016	IM 膜开发	200万	6人(不包含生	研发总监, 项目总担当
	(国产取代进	人民币	产,营销人数)	担任材料开发,评价技术指导
	口)			任务。国产替代成功, 打破国
				外对此产品的长期垄断。

2016-2018	触控、滤光片光	1500 万	15 人(不包含	研发总监,基材项目总担当
	学薄膜开发	人民币	生产, 营销人	担任开发,评价技术、生产工
			数)	艺的指导任务。团队开发、设
				计的 NIR 滤光片, 为国内外各
				大移动终端厂商(包括苹果、
				三星等) 所采用。

主要成果 (详细请参考附件资料)

(1) 代表性论著(论文)

发表时间	论著(论文)名称	发表载体	论著(论文)作者
2002	Synthesis of a PET-Clay Hybrid	Chemistry	Guozhen Zhang ,
	Materials	Letters	TETSUYA SHICHI,
			KATSUHIKO TAKAGI*
2003	PET-Clay Hybrids with Improved Tensile	Material	Guozhen Zhang ,
	Strength	Letters	TETSUYA SHICHI,
			KATSUHIKO TAKAGI*
2003	Hybridization of Clay Nanosheets-Poly	Clay Science	Guozhen Zhang ,
	(ethylene terethphatalates) Hybrid		TETSUYA SHICHI,
	Materials		KATSUHIKO TAKAGI*
2004	The Preparation of PET-Montmorillonite	Composite	Guozhen Zhang ,
	Hybrid Materials	Interface	TETSUYA SHICHI,
			KATSUHIKO TAKAGI*
2007	The Synthesis of a New PET-Layered	Research on	Guozhen Zhang ,
	Niobate Hybrid Material	Chemistry	Zhiwei Tong ,
		Intermediate	TETSUYA SHICHI,
			KATSUHIKO TAKAGI*

(2) 授权核心发明专利举例

专利保护期	专利名称	授权国家	专利所有者
2005-2025	防反射材料的制造方法	日本	凸版印刷
2006-2026	高强度, 低卷曲度保护涂层材料	日本	凸版印刷
2008-2028	剥离薄膜的制作	日本	凸版印刷
2008-2028	涂工用中间粘结剂	日本	凸版印刷
2012-2032	高强度保护涂层材料的制备方法	日本	凸版印刷
2012-2032	剥离胶片及复合薄膜	日本	凸版印刷
2012-2032	剥离胶片及复合薄膜	日本	凸版印刷
2014-2034	透明导电薄膜的制造	日本	凸版印刷
2014-2034	复合薄膜的制造	日本	凸版印刷

2014-2034	透明导电膜及触摸屏	日本	凸版印刷	
2008-2028	剥离薄膜的制作	国际	凸版印刷	

国内申请及获得授权的发明专利近80项

(3) 产品:

凸版印刷公司:显示面板用光学保护膜及防反增透薄膜(TAC),大规模量产; 纳米硅胶薄膜,大规模量产;

ITO 薄膜, 大规模量产。

JSR 公司: ITO 薄膜(基材不同于凸版 ITO 产品), 量产; 开发的光电薄膜材料, 大规模量产。

上述产品累计年销售额超过数十亿人民币。

康得新公司: IM 膜成功取代进口, 填补国内空白, 规模量产:

开发的光学薄膜产品打破国外垄断, 为国际一流厂商采用。

上述产品累计年销售额超过1.5亿元人民币。

其他(包括获得的重要奖项、在国际学术组织兼职、在国际学术会议做重要报告等)国外项目获奖状况:

凸版印刷公司(原世界500强):显示面板用光学保护膜及防反增透薄膜,2008年社长奖(同下)纳米硅胶薄膜,2009年社长奖(公司最高奖) ITO薄膜,2010年优秀研发奖

JSR 公司: ITO 薄膜(基材不同于凸版 ITO 产品), 优秀研发奖; 光电薄膜材料, 优秀研发奖。

国内获奖状况:

2016年中组部国家千人计划特聘专家(长期创新,第12批)

2016年张家港市双创市长奖

科技部中英政府间项目-柔性石墨烯传感器项目中方负责人(2017.4-2019.3)

康得新公司: 最佳员工奖, 优秀研发奖

浙江省千人计划特聘专家及嘉兴市领军人才计划特聘专家

国际会议报告:

The 9th China-Japan Bilateral Symposium on Intelligent lectrophotonic Materials & Molecular Electronics (9thSIEMME),报告题目: Synthesis of Nano-sized PET-Clay Hybrid Materials。

The 8th IUMRS International Conference on Advanced Materials, 报告题目: Hybridization of Poly (ethylene terethphalates) with Clay Nanosheets。

8th International Conference on Photochemistry, 报告题目: Organic-Inorganic Hybrid Material Synthesized by Metalloprophrin Intercalation into K4Nb6O₁₇ Thin Film。

合著出书:

Developments and Applications of Innovative Functional Materials—Utilizing Clays, Nanosheets, Mesoporous Silica and Organic Layer Materials CMC 出版社出版 2012年5月1日第一次印刷ISBN978-4-7813-0565-3 C3043

今后的研究方向:

在硬质衬底或柔性衬底上具有微纳功能层或结构的光电材料、器件的研发及其规模量产配套工艺的开发。主要面向触控、光学显示及光电传感类、医疗卫生类、能源类(太阳能电池、节能薄膜等)及其他(水氧气体阻隔、耐辐射保护、自修复等)薄膜材料的研究与其相对应的薄膜/器件工艺开发。