3.CMOS Inverter-homework

- 1. for a CMOS inverter, when the pMOS and nMOS are long-channel devices,or when the supply voltage is low, velocity does not occur, under these circumstances, $\mathrm{Vm}(\mathrm{Vin}=\mathrm{Vout})=$?
- 2. for a long channel model, please analysis a first-order expression of the current as function of Vgs and Vds in the reistive operation of a pMOS transistor.

exercises

- 3.figure shows a generic nMOS inverter used a resistive load, assume VDD=1.8V, Rload=5K/10K/15K, please give a curve of I-V characteristics both resistive and nMOS

exercises

- 4.figure shows a generic nMOS inverter used a resistive load, assume VDD $=1.8 \mathrm{~V}$, pMOS width=24/14/4, please give a curve of I-V characteristics both resistive and nMOS

exercises

- 5.A novel inverter has the transfer characteristics shown in figure. What are the values of $\mathrm{VIL}, \mathrm{VIH}, \mathrm{VOL}$, and VOH that give best noise margins? What are these high and low noise margin?

Digital IC

exercises

- 6.Graphically derive the transfer characteristics for this buffer.why is it a bad circuit idea

exercises

- 7.Consider an nMOS transistor in a 0.6um process with

W/L=4/2r(i.e., 1.2/0.6um), in this process, the gate oxide thickness is $100 \mathrm{~A}\left(1 \mathrm{~A}=10^{-}\right.$ $\left.{ }^{8} \mathrm{~cm}\right), \varepsilon_{\mathrm{ox}}=3.9 \varepsilon_{0}=3.9 * 8.85 * 10-14 \mathrm{~F} / \mathrm{cm}$, the mobility of electrons is $350 \mathrm{~cm}^{2} / \mathrm{V}$.s, the threshold voltage is 0.7 V . Plot I_{DS} vs. V_{DS} for $V_{G S}=0,1,2,3,4,5 \mathrm{~V}$

exercises

- 8. Show that the current through two transistors in series is equal to the current through a single transistor of twice the length if the transistors are well described by the long-channel model. Specifically show that $\mathrm{I}_{\mathrm{DS} 1}=\mathrm{I}_{\mathrm{DS} 2}$ in figure when the transistors are in their linear region: $V_{D S}<V_{D D}-V_{t}$ (this is also true in saturation). Hint:express the currents of the series transistors in terms of V_{1} and solve for V_{1}

(b)

exercises

- 9.Calculate the diffusion parasitic CDB of the drain of a unit-sized contacted nMOS transistor in a 0.6 um process when the drain is at 0 and at $V_{D D}=5 \mathrm{~V}$. Assume the substrate is grounded. The transistor characteristics are
$C J=0.42 f F / u m 2, M_{J}=0.44, C_{J S W}=0.33 f F / u m$, $\mathrm{M}_{\mathrm{Jsw}}=0.12$, and $\Psi_{0}=0.98 \mathrm{~V}$ at room temperature

exercises

- 10.Assume an inverter in the generic $0.25 u m$ CMOS technology designed with a PMOS-to-NMOS ratio of 6 and with the NMOS transistor minimum size($\mathrm{W}=0.375 \mathrm{um}, \mathrm{L}=0.25 \mathrm{um}, \mathrm{W} / \mathrm{L}=1.5$)
- Please give the gain of VM, and VIL,VIH,NML,NMH, VTC curve

exercises

- 11.Calculating nMOS 1,2,3,4's AS(area of Source), AD (area of Drain),PS(perimeter of Source),PD (perimeter of Drain), assuming $\lambda=0.25 u m$, we use Keq=0.57,Keqsw=0.61,CJ=2fF,CJSW=0.28 for nMOS
- Calculating the internal capacitors between AB,BC,CD

Digital IC

exercises

- 12.Determine the sizes of the inverters in the figure, such that the delay between nodes out and in is minimized, $C L=64 \mathrm{Cg} 1$ is assumed

Digital IC

exercises

- 13.Calculate the internal capacitor between the two inverters using simple capacitor computing model, numbers show in the figure mean the nMOS width

exercises

- 14.Sizing a chain of inverters.
- a. In order to drive a large capacitance (CL = 20 pF) from a minimum size gate (with input capacitance $\mathrm{Ci}=$ 10fF), you decide to introduce a two-staged buffer as shown in Figure Assume that the propagation delay of a minimum size inverter is 70 ps . Also assume that the input capacitance of a gate is proportional to its size. Determine the sizing of the two additional buffer stages that will minimize the propagation delay.
- b. If you could add any number of stages to achieve the minimum delay, how many stages would you insert?What is the propagation delay in this case?

exercises

- c. Describe the advantages and disadvantages of the methods shown in (a) and (b).
- d. Determine a closed form expression for the power consumption in the circuit. Consider only gate capacitances in your analysis. What is the power consumption for a supply voltage of 2.5 V and an activity factor of 1 ?

