
Jiang Jiang
jiangjiang@ic.sjtu.edu.cn

Chapter 2

Instructions: Language
 of the Computer

Chapter 2 — Instructions: Language of the Computer — 2

[Adapted from Computer Organization and Design,
 4th Edition, Patterson & Hennessy, © 2008, MK]

Chapter 2 — Instructions: Language of the Computer — 3

Instruction Set
n  The collection of instructions of a

 computer
n  Different computers have different

 instruction sets
n  But with many aspects in common

n  Early computers had very simple
 instruction sets
n  Simplified implementation

n  Many modern computers also have
 simple instruction sets

§2.1 Introduction

Instruction Set Architecture
n  Anything programmers need to know to make a

binary machine language program work
correctly, including:
n  Registers
n  Organization of programmable storage
n  Data types and data structures: encoding and

representations
n  Instruction set
n  Instruction formats
n  Modes of addressing: accessing data items and

instructions
n  Exceptional conditions

Chapter 2 — Instructions: Language of the Computer — 4

Chapter 2 — Instructions: Language of the Computer — 5

The MIPS Instruction Set
n  Used as the example throughout the book
n  Stanford MIPS commercialized by MIPS Technologies

n  www.mips.com
n  Founded in 1984 by a group of researchers from Stanford

 University that included John L. Hennessy

n  Little share of embedded core market
n  Applications in consumer electronics, network/storage

 equipment, cameras, printers, …

n  Typical modern ISAs
n  ARM: ARMv7
n  HP: PA-RISC 2.0
n  Intel: x86 - IA-32, x86-64 (Intel 64); IA-64
n  MIPS: MIPS32, MIPS64
n  SUN: SPARC-V9

Chapter 2 — Instructions: Language of the Computer — 6

Arithmetic Operations
n  Add and subtract, three operands

n  Two sources and one destination

 add a, b, c # a gets b + c

n  Operation, operator, operand
n  All arithmetic operations have this form
n  Design Principle 1: Simplicity favors regularity

n  Regularity makes implementation simpler
n  Simplicity enables higher performance at lower cost

§2.2 O
perations of the C

om
puter H

ardw
are

op rs rt rd shamt funct
6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

0 31

Chapter 2 — Instructions: Language of the Computer — 7

Arithmetic Example
n  C code:
 f = (g + h) - (i + j);

n  Compiled MIPS code:
 add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

Chapter 2 — Instructions: Language of the Computer — 8

Register Operands
n  Arithmetic instructions use operands from

 registers
n  The size of a register in MIPS architecture

 is 32 bits, which is a word
n  The word is the natural unit of access in a

 computer, usually a group of 32 bits;
 corresponds to the size of a register

§2.3 O
perands of the C

om
puter H

ardw
are

Chapter 2 — Instructions: Language of the Computer — 9

Register Operands
n  The word size/length, 8b/32b/64b and the

 memory address space
n  GPRs（General-Purpose Registers)

lw $t0, 32($s3) # load word

$s3: the size of a register
n  Cf. Width of address bus

n  MIPS: 232 bytes or 230 words
n  Memory is byte addressed

Register Operands
n  MIPS has a 32 × 32-bit register file

n  Use for frequently accessed data
n  Cache of cache?

n  Numbered 0 to 31
n  Assembler names

n  $t0, $t1, …, $t9 for temporary values
n  $s0, $s1, …, $s7 for saved variables
n  $zero

n  Design Principle 2: Smaller is faster
n  Cf. main memory: millions of locations

Chapter 1 — Computer Abstractions and Technology — 10

Chapter 2 — Instructions: Language of the Computer — 11

Register Operand Example
n  C code:
 f = (g + h) - (i + j);

n  f, …, j in $s0, …, $s4
n  Compiled MIPS code:
 add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

Chapter 2 — Instructions: Language of the Computer — 12

Memory Operands
n  Data transfer instruction: before arithmetic

 operations can be done
n  Load values from memory into registers
n  Store result from register to memory
n  RISC (Reduced instruction set computing) vs. CISC

n  Only load and store instructions access memory
n  Memory is byte addressed

n  Each address identifies an 8-bit byte
n  Alignment restriction: words are aligned in memory

n  For lw/sw, the address must be a multiple of 4
n  If either of the two least-significant bits of the address are

 non-zero, an Address Error exception occurs

Chapter 2 — Instructions: Language of the Computer — 13

Addressing Alignment Constraints
n  MIPS uses byte addressing for halfword, word,

 and doubleword accesses with the following
 alignment constraints:
n  Halfword accesses must be aligned on an even byte

 boundary (0, 2, 4...).
n  Word accesses must be aligned on a byte boundary

 divisible by four (0, 4, 8...).
n  Doubleword accesses must be aligned on a byte

 boundary divisible by eight (0, 8, 16...).

Endianness
n  MIPS can support both big and

 little endian
n  Big endian: most-significant byte

 at least address of a word.
n  Motorola 6800, 68000; PowerPC,

 System/370; PDP-10; SPARC until
 version 9

n  Little endian: least-significant byte
 at least address
n  x86, 6502, Z80, VAX, and, largely,

 PDP-11
n  Bi-endian: switchable endianness

n  ARM, PowerPC, Alpha, SPARC V9,
 MIPS, PA-RISC and IA-64

Chapter 1 — Computer Abstractions and Technology — 14

Chapter 2 — Instructions: Language of the Computer — 15

Memory Operand Example 1
n  C code:
 g = h + A[8];

n  g in $s1, h in $s2, base address of A in $s3
n  Compiled MIPS code:

n  Index 8 requires offset of 32
n  4 bytes per word

 lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base register

Chapter 2 — Instructions: Language of the Computer — 16

Memory Operand Example 2
n  C code:
 A[12] = h + A[8];

n  h in $s2, base address of A in $s3
n  Compiled MIPS code:

n  Index 8 requires offset of 32
 lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

Chapter 2 — Instructions: Language of the Computer — 17

Registers vs. Memory
n  Registers are faster than memory

n  Smaller is faster
n  Operating on memory data requires loads

 and stores
n  More instructions to be executed

n  Compiler must use registers for variables
 as much as possible
n  Only spill to memory for less frequently used

 variables by store
n  Register optimization is important!

Chapter 2 — Instructions: Language of the Computer — 18

Immediate Operands
n  Constant data specified in an instruction
 addi $s3, $s3, 4

n  No subtract immediate instruction
n  Just use a negative constant
 addi $s2, $s1, -1

n  Design Principle 3: Make the common case fast
n  Small constants are common
n  Immediate operand avoids a load instruction

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

Chapter 2 — Instructions: Language of the Computer — 19

The Constant Zero
n  MIPS register 0 ($zero) is the constant 0

n  Cannot be overwritten
n  Hardwired to ground

n  Useful for common operations
n  E.g., move between registers
 add $t2, $s1, $zero

Chapter 2 — Instructions: Language of the Computer — 20

Unsigned Binary Integers
n  Given an n-bit number

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx ++++= −

−
−

−

n  Range: 0 to +2n – 1
n  Example

n  0000 0000 0000 0000 0000 0000 0000 10112
= 0 + … + 1×23 + 0×22 +1×21 +1×20
= 0 + … + 8 + 0 + 2 + 1 = 1110

n  Using 32 bits
n  0 to +4,294,967,295

§2.4 S
igned and U

nsigned N
um

bers

Chapter 2 — Instructions: Language of the Computer — 21

2s-Complement Signed Integers
n  Given an n-bit number

x = −xn−12
n−1+ xn−22

n−2 ++ x12
1+ x02

0

n  Range: –2n – 1 to +2n – 1 – 1
n  Example

n  1111 1111 1111 1111 1111 1111 1111 11002
= –1×231 + 1×230 + … + 1×22 +0×21 +0×20
= –2,147,483,648 + 2,147,483,644 = –410

n  Using 32 bits
n  –2,147,483,648 to +2,147,483,647

Chapter 2 — Instructions: Language of the Computer — 22

2s-Complement Signed Integers
n  Bit 31 (from 0) is sign bit

n  1 for negative numbers
n  0 for non-negative numbers

n  Non-negative numbers have the same unsigned
 and 2s-complement representation

n  Some specific numbers
n  0: 0000 0000 … 0000
n  –1: 1111 1111 … 1111
n  Most-negative: 1000 0000 … 0000 –2n – 1
n  Most-positive: 0111 1111 … 1111 +2n – 1 – 1

n  –(–2n – 1) can’t be represented

Chapter 2 — Instructions: Language of the Computer — 23

Signed Negation
n  Complement and add 1

n  Complement means 1 → 0, 0 → 1

x1x

11111...111xx 2

−=+

−==+

n  Example: negate +2
n  +2 = 0000 0000 … 00102
n  –2 = 1111 1111 … 11012 + 1

 = 1111 1111 … 11102

Chapter 2 — Instructions: Language of the Computer — 24

Sign Extension
n  Representing a number using more bits

n  Preserve the numeric value
n  In MIPS instruction set

n  addi: extend immediate value
n  lb, lh: extend loaded byte/halfword
n  beq, bne: extend the displacement

n  Sign Extension: replicate the sign bit to the left
n  Cf. unsigned values: extend with 0s

n  Examples: 8-bit to 16-bit
n  +2: 0000 0010 => 0000 0000 0000 0010
n  –2: 1111 1110 => 1111 1111 1111 1110

Chapter 2 — Instructions: Language of the Computer — 25

Representing Instructions
n  Machine language

n  Instructions are encoded in binary, called
 machine code

n  Used for communication within a computer
n  Very hard to make out which instruction is

 which
n  Assembly language

n  Symbolic representation of machine
 instructions： mnemonic symbol

§2.5 R
epresenting Instructions in the C

om
puter

MIPS Instruction Set
n  MIPS instructions

n  Encoded as 32-bit instruction words
n  Small number of formats encoding operation

 code (opcode), register numbers, …
n  Similar instructions have the same format

n  Simplicity favors regularity!

n  Register numbers
n  $t0 – $t7 are reg’s 8 – 15
n  $t8 – $t9 are reg’s 24 – 25
n  $s0 – $s7 are reg’s 16 – 23

Chapter 1 — Computer Abstractions and Technology — 26

Chapter 2 — Instructions: Language of the Computer — 27

MIPS R-format Instructions

n  Instruction format
n  The layout of the instruction

n  Instruction fields
n  op: operation code (opcode)
n  rs: first source register number
n  rt: second source register number
n  rd: destination register number
n  shamt: shift amount (00000, useless for R-format)
n  funct: function code (extends opcode)

op rs rt rd shamt funct
6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 28

R-format Example

 add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct
6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

Machine code	

Chapter 2 — Instructions: Language of the Computer — 29

Hexadecimal
n  Base 16

n  Compact representation of bit strings
n  4 bits per hex digit

0 0000 4 0100 8 1000 c 1100
1 0001 5 0101 9 1001 d 1101
2 0010 6 0110 a 1010 e 1110
3 0011 7 0111 b 1011 f 1111

n  Example: eca8 6420
n  1110 1100 1010 1000 0110 0100 0010 0000

Chapter 2 — Instructions: Language of the Computer — 30

MIPS I-format Instructions

n  Immediate arithmetic and load/store instructions
n  rt: destination (addi, lw) or source (sw) register

 number
n  Constant: –215 to +215 – 1 (signed)
n  Address: offset added to base address in rs

n  Design Principle 4: Good design demands good
 compromises
n  Different formats complicate decoding, but allow 32-bit

 instructions uniformly
n  Keep formats as similar as possible

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

Chapter 2 — Instructions: Language of the Computer — 31

Stored Program Computers
n  Stored-program concept

n  Instructions represented in binary as
 numbers, just like data

n  Instructions and data are stored in
 memory to be read or written, just
 like numbers

n  Programs can operate on
 programs
n  E.g., compilers, linkers, …

n  Binary compatibility allows
 compiled programs to work on
 different computers
n  Often leads industry to align around a

 small number of ISAs, e.g. x86, ARM
n  Ecosystem

The BIG Picture

Von Neumann architecture
n  Von Neumann architecture

n  “Stored-program computer“ and
 "Von Neumann architecture" are
 interchangeably

n  Named after the mathematician
 and early computer scientist John
 von Neumann

n  Arose from Von Neumann's paper
 "First Draft of a Report on the
 EDVAC"

n  Von Neumann bottleneck
n  The limited throughput between the

 CPU and memory (memory wall)

n  Cf. Harvard architecture

Chapter 1 — Computer Abstractions and Technology — 32

Chapter 2 — Instructions: Language of the Computer — 33

Logical Operations
n  Instructions for bitwise manipulation

Operation C Java MIPS
Shift left << << sll

Shift right >> >>> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

§2.6 Logical O
perations

Chapter 2 — Instructions: Language of the Computer — 34

Shift Operations

sll $t2, $t1, 3

n  R-format
n  rs: unused
n  shamt: how many positions to shift

n  Useless for add/sub

n  Simplicity favors regularity!
n  Useful for extracting and inserting groups

 of bits in a word

SLL Shift Word Left Logical

A-134 MIPS IV Instruction Set. Rev 3.2 CPU Instruction Set

Format: SLL rd, rt, sa MIPS I
Purpose: To left shift a word by a fixed number of bits.

Description: rd ← rt << sa
The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeroes
into the emptied bits; the word result is placed in GPR rd. The bit shift count is
specified by sa. If rd is a 64-bit register, the result word is sign-extended.

Restrictions:
None

Operation:
s ← sa
temp ← GPR[rt](31-s)..0 || 0s

GPR[rd]← sign_extend(temp)

Exceptions:
None

Programming Notes:
Unlike nearly all other word operations the input operand does not have to be a
properly sign-extended word value to produce a valid sign-extended 32-bit result. The
result word is always sign extended into a 64-bit destination register; this instruction
with a zero shift amount truncates a 64-bit value to 32 bits and sign extends it.

Some assemblers, particularly 32-bit assemblers, treat this instruction with a shift
amount of zero as a NOP and either delete it or replace it with an actual NOP.

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa SLL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0

Shift Operations
n  Shift left logical

n  Shift left and fill with 0 bits
n  sll by i bits multiplies by 2i

n  Shift right logical
n  Shift right and fill with 0 bits
n  srl by i bits divides by 2i (unsigned only)

n  Shift right arithmetic
n  Duplicate the sign-bit (bit 31)
n  sra by i bits divides by 2i (signed)

 Chapter 1 — Computer Abstractions and Technology — 35

Chapter 2 — Instructions: Language of the Computer — 36

AND Operations
n  Useful to mask bits in a word

n  Select some bits, clear others to 0

 and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000 $t0

AND And

A-32 MIPS IV Instruction Set. Rev 3.2 CPU Instruction Set

Format: AND rd, rs, rt MIPS I
Purpose: To do a bitwise logical AND.

Description: rd ← rs AND rt
The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical
AND operation. The result is placed into GPR rd.

Restrictions:
None

Operation:
GPR[rd] ← GPR[rs] and GPR[rt]

Exceptions:
None

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 AND

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

Chapter 2 — Instructions: Language of the Computer — 37

OR Operations
n  Useful to include bits in a word

n  Set some bits to 1, leave others unchanged

 or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000 $t0

OR Or

A-114 MIPS IV Instruction Set. Rev 3.2 CPU Instruction Set

Format: OR rd, rs, rt MIPS I
Purpose: To do a bitwise logical OR.

Description: rd ← rs OR rt
The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical
OR operation. The result is placed into GPR rd.

Restrictions:
None

Operation:
GPR[rd] ← GPR[rs] or GPR[rt]

Exceptions:
None

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 OR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1

Chapter 2 — Instructions: Language of the Computer — 38

NOT Operations
n  Useful to invert bits in a word

n  Change 0 to 1, and 1 to 0
n  No NOT operation, but NOR

n  MIPS has NOR 3-operand instruction
n  a NOR b == NOT (a OR b)

 nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000 $t1

1111 1111 1111 1111 1100 0011 1111 1111 $t0

Not OrNOR

 CPU Instruction Set MIPS IV Instruction Set. Rev 3.2 A-113

Format: NOR rd, rs, rt MIPS I
Purpose: To do a bitwise logical NOT OR.

Description: rd ← rs NOR rt
The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical
NOR operation. The result is placed into GPR rd.

Restrictions:
None

Operation:
GPR[rd] ← GPR[rs] nor GPR[rt]

Exceptions:
None

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 NOR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1

Chapter 2 — Instructions: Language of the Computer — 39

Conditional Operations
n  The difference between a computer and a

 calculator is the ability to make decisions
n  In high level language

n  if statement
n  go to statement

n  Branch to a labeled instruction if a condition is
 true; Otherwise, continue sequentially

n  Conditional and unconditional branches
n  PC-relative and absolute/register indirect

 branch

§2.7 Instructions for M
aking D

ecisions

Chapter 2 — Instructions: Language of the Computer — 40

Conditional Operations
n  MIPS defines the following instructions

n  PC-relative conditional branch: bne,beq, ± 128 KB
n  PC-region unconditional jump: j, jal, 256MB region
n  Absolute/register indirect unconditional jump: jr

n  How to “decide”? Program counter (PC)
n  The register containing the address of the instruction

 in the program being executed
n  PC is affected only indirectly by certain instructions -

 it is NOT an architecturally-visible register

Conditional Operations
n  Conditional branches

n  beq rs, rt, L1
n  if (rs == rt) branch to instruction labeled L1;

n  bne rs, rt, L1
n  if (rs != rt) branch to instruction labeled L1;

n  Cf. ARM
n  cmp r1, r2 #CPSR <= r1-e2 in

n  beq L1 #test CPSR, then..

Chapter 1 — Computer Abstractions and Technology — 41

BNE Branch on Not Equal

A-48 MIPS IV Instruction Set. Rev 3.2 CPU Instruction Set

Format: BNE rs, rt, offset MIPS I
Purpose: To compare GPRs then do a PC-relative conditional branch.

Description: if (rs ≠ rt) then branch
An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address
of the instruction following the branch (not the branch itself), in the branch delay slot,
to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address
after the instruction in the delay slot is executed.

Restrictions:
None

Operation:
I : tgt_offset ← sign_extend(offset || 02)

condition ← (GPR[rs] ≠ GPR[rt])
I+ 1 :if condition then

PC ← PC + tgt_offset
endif

Exceptions:
None

Programming Notes:
With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes.
Use jump (J) or jump register (JR) instructions to branch to more distant addresses.

31 2526 2021 1516 0

BNE rs rt offset

6 5 5 16
0 0 0 1 0 1

Conditional Operations
n  Unconditional branch

n  j L1
n  Unconditional jump to instruction labeled L1
n  PC-region: 256 MB aligned region

Chapter 1 — Computer Abstractions and Technology — 42

J Jump

A-74 MIPS IV Instruction Set. Rev 3.2 CPU Instruction Set

Format: J target MIPS I
Purpose: To branch within the current 256 MB aligned region.

Description:
This is a PC-region branch (not PC-relative); the effective target address is in the
“current” 256 MB aligned region. The low 28 bits of the target address is the instr_index
field shifted left 2 bits. The remaining upper bits are the corresponding bits of the
address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction following the jump, in the
branch delay slot, before jumping.

Restrictions:
None

Operation:
I :
I+ 1 :PC ← PCGPRLEN..28 || instr_index || 02

Exceptions:
None

Programming Notes:
Forming the branch target address by catenating PC and index bits rather than adding
a signed offset to the PC is an advantage if all program code addresses fit into a 256 MB
region aligned on a 256 MB boundary. It allows a branch to anywhere in the region
from anywhere in the region which a signed relative offset would not allow.

This definition creates the boundary case where the branch instruction is in the last
word of a 256 MB region and can therefore only branch to the following 256 MB region
containing the branch delay slot.

31 2526

J

6

0

instr_index

26
0 0 0 0 1 0

Chapter 2 — Instructions: Language of the Computer — 43

Compiling If Statements
n  C code:
 if (i==j) f = g+h;
else f = g-h;

n  f, g, … in $s0, $s1, …
n  Compiled MIPS code:
 bne $s3, $s4, Else # <> ?
 add $s0, $s1, $s2
 j Exit
Else: sub $s0, $s1, $s2
Exit: …

Assembler calculates addresses

Chapter 2 — Instructions: Language of the Computer — 44

Compiling Loop Statements
n  C code:
 while (save[i] == k) i += 1; //cf. for

n  i in $s3, k in $s5, base address saved in $s6
n  Compiled MIPS code:
 Loop: sll $t1, $s3, 2 #word:4B,*4
 add $t1, $t1, $s6 #base+offset*4
 lw $t0, 0($t1) #load save[i]
 bne $t0, $s5, Exit # <> k ?
 addi $s3, $s3, 1 # ==k, i += 1
 j Loop
Exit: …

Chapter 2 — Instructions: Language of the Computer — 45

Basic Blocks
n  A basic block is a sequence of instructions

 with
n  No embedded branches (except at end)
n  No branch targets (except at beginning)

n  A compiler identifies basic
blocks for optimization

n  An advanced processor
can accelerate execution
of basic blocks

Chapter 2 — Instructions: Language of the Computer — 46

More Conditional Operations
n  Set on less than: slt

n  Set result to 1 if a condition is true
n  Otherwise, set to 0

n  slt rd, rs, rt

n  if (rs < rt) rd = 1; else rd = 0;
n  slti rt, rs, constant

n  if (rs < constant) rt = 1; else rt = 0;
n  Use in combination with beq, bne è blt

 slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L, ≠ 0

SLT Set On Less Than

A-136 MIPS IV Instruction Set. Rev 3.2 CPU Instruction Set

Format: SLT rd, rs, rt MIPS I
Purpose: To record the result of a less-than comparison.

Description: rd ← (rs < rt)
Compare the contents of GPR rs and GPR rt as signed integers and record the Boolean
result of the comparison in GPR rd. If GPR rs is less than GPR rt the result is 1 (true),
otherwise 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:
None

Operation:
if GPR[rs] < GPR[rt] then

GPR[rd] ← 0GPRLEN-1 || 1
else

GPR[rd] ← 0GPRLEN

endif

Exceptions:
None

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SLT

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 0 1 0 1 00 0 0 0 0

Chapter 2 — Instructions: Language of the Computer — 47

Branch Instruction Design
n  Why not blt, bge, etc? (just beq, bne)

n  Pseudoinstruction

n  Hardware for <, ≥, … slower than =, ≠
n  Combining with branch involves more work per

 instruction, requiring a slower clock
n  All instructions penalized!

n  beq and bne are the common case
n  Make the common case fast

n  This is a good design compromise
n  Good design demands good compromise

Chapter 2 — Instructions: Language of the Computer — 48

Signed vs. Unsigned
n  Signed comparison: slt, slti
n  Unsigned comparison: sltu, sltiu
n  Example

n  $s0 = 1111 1111 1111 1111 1111 1111 1111 1111

n  $s1 = 0000 0000 0000 0000 0000 0000 0000 0001

n  slt $t0, $s0, $s1 # signed

n  –1 < +1 ⇒ $t0 = 1

n  sltu $t0, $s0, $s1 # unsigned

n  +4,294,967,295 > +1 ⇒ $t0 = 0

Chapter 2 — Instructions: Language of the Computer — 49

Pseudoinstruction

Procedure
n  Procedure

n  A stored subroutine that performs a specific
 task based on the parameters

n  Advantages: code reuse, easy understanding
n  Caller: the calling procedure, providing

 parameters to callee
n  Callee: the called program, executes

 stored instructions based on the
 parameters provided by the caller

Chapter 1 — Computer Abstractions and Technology — 50

§2.8 S
upporting P

rocedures in C
om

puter H
ardw

are

Procedure Calling
n  To execute a procedure, steps required

1.  Place parameters in registers accessible to
 procedure (callee)

2.  Transfer control to procedure
3.  Acquire storage for procedure
4.  Perform procedure’s operations
5.  Place result in register accessible to caller
6.  Return to place of call

Chapter 1 — Computer Abstractions and Technology — 51

Chapter 2 — Instructions: Language of the Computer — 52

Register Usage
n  $a0 – $a3: reg’s 4 – 7

n  4 arguments register to pass parameters
n  $v0, $v1: reg’s 2 – 3

n  2 result registers to return values
n  $ra: reg 31

n  return address register to return to the point of call
n  $t0 – $t9: reg’s 8 – 15, reg’s 24 – 25

n  Temporaries. Can be overwritten by callee
n  $s0 – $s7: reg’s 16 – 23

n  Saved. Must be saved/restored by callee
n  $gp: global pointer for static data (reg 28)
n  $sp: stack pointer (reg 29)
n  $fp: frame pointer (reg 30)
n  $at: assembler temporary (reg 1)

Chapter 2 — Instructions: Language of the Computer — 53

Procedure Call Instructions
n  Procedure call: jump and link
 jal ProcedureLabel

n  Address of following instruction put in $ra
n  Link: put the return address in $ra ($31)
n  The same procedure can be called from several parts (address) of

 the program
n  Jumps to target address: in 256 MB region

n  Procedure return: jump register
 jr $ra

n  Copies $ra to program counter: register indirect branch, 32b
n  Unconditional branch to the address of $ra

Jump And LinkJAL

 CPU Instruction Set MIPS IV Instruction Set. Rev 3.2 A-75

Format: JAL target MIPS I
Purpose: To procedure call within the current 256 MB aligned region.

Description:
Place the return address link in GPR 31. The return link is the address of the second
instruction following the branch, where execution would continue after a procedure
call.

This is a PC-region branch (not PC-relative); the effective target address is in the
“current” 256 MB aligned region. The low 28 bits of the target address is the instr_index
field shifted left 2 bits. The remaining upper bits are the corresponding bits of the
address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction following the jump, in the
branch delay slot, before jumping.

Restrictions:
None

Operation:
I : GPR[31] ← PC + 8
I+ 1 :PC ← PCGPRLEN..28 || instr_index || 02

Exceptions:
None

Programming Notes:
Forming the branch target address by catenating PC and index bits rather than adding
a signed offset to the PC is an advantage if all program code addresses fit into a 256 MB
region aligned on a 256 MB boundary. It allows a branch to anywhere in the region
from anywhere in the region which a signed relative offset would not allow.

This definition creates the boundary case where the branch instruction is in the last
word of a 256 MB region and can therefore only branch to the following 256 MB region
containing the branch delay slot.

31 2526

JAL

6

0

instr_index

26
0 0 0 0 1 1

Jump RegisterJR

 CPU Instruction Set MIPS IV Instruction Set. Rev 3.2 A-77

Format: JR rs MIPS I
Purpose: To branch to an instruction address in a register.

Description: PC ← rs
Jump to the effective target address in GPR rs. Execute the instruction following the
jump, in the branch delay slot, before jumping.

Restrictions:
The effective target address in GPR rs must be naturally aligned. If either of the two
least-significant bits are not -zero, then an Address Error exception occurs, not for the
jump instruction, but when the branch target is subsequently fetched as an instruction.

Operation:
I : temp ← GPR[rs]
I+ 1 :PC ← temp

Exceptions:
None

21 2031 2526

SPECIAL

6

0

JRrs

6 5

5 15 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Procedure Call
n  Caller

n  The calling program puts the parameter
 values in $a0 - $a3 (4 registers)

n  Transfers control to jump to procedure x using
 jal x

n  Callee
n  The procedure x then performs the

 calculations
n  Places the results in $v0 and $v1 (2 registers)
n  Returns control to caller using jr $ra

Chapter 1 — Computer Abstractions and Technology — 54

Using More Registers
n  What if more register for a procedure needed?

n  To spill register to memory from register file
n  Ideal data structure is a stack

Chapter 1 — Computer Abstractions and Technology — 55

n  Stack: a last-in-first-out queue
 in memory
n  Stack pointer ($sp, reg 29) to

 most recently allocated address
n  Stacks “grow” from higher to

 lower address
n  Operations

n  push: by subtracting from $sp
n  pop: by adding to $sp

	

Temporary and Saved Register
n  MIPS software separates 18 registers into

n  $t0 – $t9: temporaries registers
n  Can be overwritten (not preserved) by callee
n  The caller will never use the values in them

n  $s0 – $s7: saved registers
n  Must be saved/restored by callee if callee wants to

 use them
n  The caller need to use the values in them again

n  This convention(!) reduces register spilling

Chapter 1 — Computer Abstractions and Technology — 56

Chapter 2 — Instructions: Language of the Computer — 57

Leaf Procedure Example
n  Procedures that do not call others
n  C code:
 int leaf_example (int g, h, i, j)
{ int f;
 f = (g + h) - (i + j);
 return f;
}

n  Arguments g, …, j in $a0, …, $a3
n  f in $s0 (hence, need to save $s0 on stack)
n  Result in $v0

Chapter 2 — Instructions: Language of the Computer — 58

Leaf Procedure Example
n  MIPS code:
 leaf_example:
 addi $sp, $sp, -4
 sw $s0, 0($sp)
 add $t0, $a0, $a1
 add $t1, $a2, $a3
 sub $s0, $t0, $t1
 add $v0, $s0, $zero
 lw $s0, 0($sp)
 addi $sp, $sp, 4
 jr $ra

Save $s0 on stack: spill

Procedure body

Restore $s0

Move result to $v0

Return

Chapter 2 — Instructions: Language of the Computer — 59

Non-Leaf Procedures
n  Procedures that call other procedures

n  Parent and child at the same time

n  For nested call
n  The caller (may be called) needs to save on the stack

n  Any arguments ($a0-$a3) : from parent, may be used after
 the call

n  Any temporaries ($t0-$t9) needed after the call: may be used
 by child freely

n  The callee (may call) needs to push to the stack
n  Its return address ($ra) : may be used by child to call his child
n  Any saved registers ($s0-$s7) used by the callee: from parent

n  On the return, the registers are restored from
 memory and the $sp is readjusted

Chapter 2 — Instructions: Language of the Computer — 60

Non-Leaf Procedure Example
n  C code: calculate factorial
 int fact (int n)
{
 if (n < 1) return 1;
 else return n * fact(n - 1);
}

n  Argument n in $a0
n  Result in $v0

Chapter 2 — Instructions: Language of the Computer — 61

Non-Leaf Procedure Example
n  MIPS code: act as both caller and callee
 fact:
 addi $sp, $sp, -8 # adjust stack for 2 items
 sw $ra, 4($sp) # save return address
 sw $a0, 0($sp) # save argument
 slti $t0, $a0, 1 # test for n < 1
 beq $t0, $zero, L1
 addi $v0, $zero, 1 # if so, result is 1
 addi $sp, $sp, 8 # pop 2 items from stack
 jr $ra # and return
L1: addi $a0, $a0, -1 # else decrement n
 jal fact # recursive call
 lw $a0, 0($sp) # restore original n
 lw $ra, 4($sp) # and return address
 addi $sp, $sp, 8 # pop 2 items from stack
 mul $v0, $a0, $v0 # multiply to get result
 jr $ra # and return

Use $a0 after the call

Chapter 2 — Instructions: Language of the Computer — 62

Local Data on the Stack

n  Procedure frame (activation record)
n  The segment of stack containing a callee’s saved

 registers and local variables (allocated by callee) in
 memory, e.g., C automatic variables

n  Used by some compilers to manage stack storage
n  Frame pointer ($fp, reg 30): point to first word of the

 frame of a procedure

Chapter 2 — Instructions: Language of the Computer — 63

Memory Layout
n  Text segment

n  Machine code
n  Static data segment

n  Global variables, e.g., static
 variables in C, constant
 arrays and strings

n  $gp initialized to address
 allowing ±offsets

n  Dynamic data segment
n  Heap: grow from low to high
n  E.g., malloc()/free() in C, new

 in java
n  Stack: automatic storage

Heap and stack grow
 toward each other,
 allowing more efficient
 use of memory	

Chapter 2 — Instructions: Language of the Computer — 64

Character Data
n  Byte-encoded character sets

n  ASCII: 128 characters
n  American Standard Code for Information Interchange
n  95 graphic, 33 control

n  Latin-1: 256 characters
n  ASCII, +96 more graphic characters

n  Unicode: 16/32-bit character set
n  Universal encoding of the alphabets of most human

 language
n  Used in Java (16 bit by default), C++ wide characters
n  Most of the world’s alphabets, plus symbols

§2.9 C
om

m
unicating w

ith P
eople

Chapter 2 — Instructions: Language of the Computer — 65

Byte/Halfword Operations
n  Could use bitwise operations

n  Byte: lb, lbu, sb;
n  Halfword: lh, lhu, sh

n  MIPS byte/halfword load/store
n  String processing is a common case

lb rt, offset(rs) lh rt, offset(rs)

n  Sign extend to 32 bits in rt
lbu rt, offset(rs) lhu rt, offset(rs)

n  Zero extend to 32 bits in rt
sb rt, offset(rs) sh rt, offset(rs)

n  Store just rightmost byte/halfword

Chapter 2 — Instructions: Language of the Computer — 66

String Copy Example
n  C code (naïve):

n  Null-terminated string
 void strcpy (char x[], char y[])
{ int i;
 i = 0;
 while ((x[i]=y[i])!='\0')
 i += 1;
}

n  Addresses of x, y in $a0, $a1
n  i in $s0

Chapter 2 — Instructions: Language of the Computer — 67

String Copy Example
n  MIPS code:
 strcpy:
 addi $sp, $sp, -4 # adjust stack for 1 item
 sw $s0, 0($sp) # save $s0
 add $s0, $zero, $zero # i = 0
L1: add $t1, $s0, $a1 # addr of y[i] in $t1
 lbu $t2, 0($t1) # $t2 = y[i]
 add $t3, $s0, $a0 # addr of x[i] in $t3
 sb $t2, 0($t3) # x[i] = y[i]
 beq $t2, $zero, L2 # exit loop if y[i] == 0
 addi $s0, $s0, 1 # i = i + 1
 j L1 # next iteration of loop
L2: lw $s0, 0($sp) # restore saved $s0
 addi $sp, $sp, 4 # pop 1 item from stack
 jr $ra # and return

Chapter 2 — Instructions: Language of the Computer — 68

0000 0000 0111 1101 0000 0000 0000 0000

32-Bit Constants
n  Most constants are small

n  16-bit immediate is sufficient (common case)
n  lui rt, constant (16b)

n  Load Upper Immediate
n  Copies 16-bit constant to left 16 bits of rt
n  Clears right 16 bits of rt to 0

n  ori rt, rs, constant (16b)
n  or immediate

n  How to get a 32b constant?
n  0000 0000 0011 1101 0000 1001 0000 0000

lui $s0, 61

0000 0000 0111 1101 0000 1001 0000 0000 ori $s0, $s0, 2304

§2.10 M
IP

S
 A

ddressing for 32-B
it Im

m
ediates and A

ddresses

Chapter 2 — Instructions: Language of the Computer — 69

Branch Addressing
n  Branch instructions specify

n  Opcode, two registers, target address

n  Most branch targets are near branch
n  Target address = PC + offset × 4
n  Forward or backward: signed
n  With the 18-bit signed instruction offset, the

 conditional branch range is ± 128 KBytes.

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

Chapter 2 — Instructions: Language of the Computer — 70

Branch Addressing
n  PC-relative addressing

n  Target address = PC + offset × 4

n  PC already incremented by 4 by this time (Chapt.
4)
n  It’s convenient for HW to increment the PC early to

point to the next instruction
n  The offset is relative to the next instruction (pc + 4),

not the current instruction (pc) – the distance, the
number of instructions

n  For branch instructions, the address of the instruction
in the delay slot (not the branch itself)

Branch Implementation
n  BNE

n  Format: bne rs, rt, offset

n  Operation

n  The offset is signed: the 18-bit offset, ± 128 KB range

n  PC-relative conditional branch
n  PC = PC + offset (sign_extend)
	 Chapter 1 — Computer Abstractions and Technology — 71

Instruction word
 address

Chapter 2 — Instructions: Language of the Computer — 72

Jump Addressing
n  Jump (j and jal) targets could be anywhere in

 text segment
n  Encode full address in instruction

op address
6 bits 26 bits

n  PC-region unconditional branch
n  Target address = PC31…28 : (address × 4)
n  With a 28 bits offset, to branch within the current

256 MB aligned region
n  A 256 MB region aligned on a 256 MB

boundary

Branch Implementation
n  J

n  Format: J target

n  Operation

n  The offset is unsigned

Chapter 1 — Computer Abstractions and Technology — 73

Instruction word
 address

Chapter 2 — Instructions: Language of the Computer — 74

Target Addressing Example
n  Loop code from earlier example

n  Assume Loop at location 80000

Loop: sll $t1, $s3, 2 80000 0 0 19 9 4 0

 add $t1, $t1, $s6 80004 0 9 22 9 0 32

 lw $t0, 0($t1) 80008 35 9 8 0

 bne $t0, $s5, Exit 80012 5 8 21 2

 addi $s3, $s3, 1 80016 8 19 19 1

 j Loop 80020 2 20000

Exit: … 80024

Chapter 2 — Instructions: Language of the Computer — 75

Branching Far Away
n  If branch target is too far to encode with

 16-bit offset, assembler rewrites the code
n  Example

 beq $s0,$s1, L1

 ↓ replaced by

 bne $s0, $s1, L2 #L2, (16+2)b
 j L1 #L1, (26+2)b

L2: …

Chapter 2 — Instructions: Language of the Computer — 76

Jump and Branch Instructions
n  MIPS defines the following jump and

 branch instructions:
n  PC-relative conditional branch: bne,beq
n  PC-region unconditional jump: j, jal
n  Absolute (register) unconditional jump: jr
n  A set of procedure calls that record a return

 link address in a general register: jal, jr

Chapter 2 — Instructions: Language of the Computer — 77

Jump and Branch Instructions

Addressing Mode
n  How the instructions identify the operand (or

 operands) of each instruction
n  An addressing mode specifies how to calculate

 the effective memory address of an operand by
 using information held in registers and/or
 constants contained within a machine instruction
 or elsewhere.

Chapter 1 — Computer Abstractions and Technology — 78

Chapter 2 — Instructions: Language of the Computer — 79

Addressing Mode Summary
1. ADDI rt, rs, immediate
 addi $s1, $s2, 3

2. ADD rd, rs, rt
 add $s1, $s2, $s3

3. LW rt, offset(base)
 lw $s1, 20($s2)

4. BNE rs, rt, offset
 bne $s1, $s2, 25

5. J target
 j 2500	

MIPS Addressing: Register operand, Immediate operand, Register + offset

Chapter 2 — Instructions: Language of the Computer — 80

Synchronization
n  Two processors sharing an area of memory

n  P1 writes, then P2 reads
n  Data race if P1 and P2 don’t synchronize

n  Result depends of order of accesses

n  Hardware support required
n  Atomic read/write memory operation
n  No other access to the location allowed between the

 read and write
n  Could be a single instruction

n  E.g., atomic swap of register ↔ memory
n  Or an atomic pair of instructions, e.g. ll, sc

§2.11 P
arallelism

 and Instructions: S
ynchronization

Chapter 2 — Instructions: Language of the Computer — 81

Synchronization in MIPS
n  Load linked: ll rt, offset(rs)
n  Store conditional: sc rt, offset(rs)

n  Succeeds if location not changed since the ll
n  Returns 1 in rt

n  Fails if location is changed
n  Returns 0 in rt

n  Example: atomic swap (to test/set lock variable)
try: add $t0,$zero,$s4 ;copy exchange value

 ll $t1,0($s1) ;load linked

 sc $t0,0($s1) ;store conditional

 beq $t0,$zero,try ;fails, try again

 add $s4,$zero,$t1 ;put load value in $s4

Chapter 2 — Instructions: Language of the Computer — 82

Translation and Startup

Many compilers produce
 object modules directly

Static linking

§2.12 Translating and S
tarting a P

rogram

Four steps:	

Chapter 2 — Instructions: Language of the Computer — 83

Assembler Pseudoinstructions
n  Most assembler instructions represent

 machine instructions one-to-one
n  Pseudoinstructions: figments of the

 assembler’s imagination
 move $t0, $t1 → add $t0, $zero, $t1
 blt $t0, $t1, L → slt $at, $t0, $t1

 bne $at, $zero, L
n  $at (register 1): assembler temporary

Chapter 2 — Instructions: Language of the Computer — 84

ARM & MIPS Similarities
n  ARM: the most popular embedded ISA
n  Similar basic set of instructions to MIPS

§2.16 R
eal S

tuff: A
R

M
 Instructions

ARM MIPS
Date announced 1985 1985
Instruction size 32 bits 32 bits
Address space 32-bit flat 32-bit flat
Data alignment Aligned Aligned
Data addressing modes 9 3
Registers 15 × 32-bit 31 × 32-bit
Input/output Memory

mapped
Memory
mapped

MIPS Addressing: Register operand, Immediate operand, Register + offset

Chapter 2 — Instructions: Language of the Computer — 85

Compare and Branch in ARM
n  ARM uses condition codes for result of an

 arithmetic/logical instruction
n  4 bits in program status word:

n  Negative, zero, carry, overflow
n  Compare instructions to set condition codes

 without keeping the result
n  Each instruction can be conditional

n  Top 4 bits of instruction word: condition value
n  Can avoid branches over single instructions
n  Cf. Predict, PRF in IA-64

Chapter 2 — Instructions: Language of the Computer — 86

Instruction Encoding

Chapter 2 — Instructions: Language of the Computer — 87

The Intel x86 ISA
n  Evolution with backward compatibility

n  8080 (1974): 8-bit microprocessor
n  Accumulator, plus 3 index-register pairs

n  8086 (1978): 16-bit extension to 8080
n  Complex instruction set (CISC)

n  8087 (1980): floating-point coprocessor
n  Adds FP instructions and register stack

n  80286 (1982): 24-bit addresses, MMU
n  Segmented memory mapping and protection

n  80386 (1985): 32-bit extension (now IA-32)
n  Additional addressing modes and operations
n  Paged memory mapping as well as segments

§2.17 R
eal S

tuff: x86 Instructions

Chapter 2 — Instructions: Language of the Computer — 88

The Intel x86 ISA
n  Further evolution…

n  i486 (1989): pipelined, on-chip caches and FPU
n  Compatible competitors: AMD, Cyrix, …

n  Pentium (1993): superscalar, 64-bit datapath
n  Later versions added MMX (Multi-Media eXtension)

 instructions
n  The infamous FDIV bug

n  Pentium Pro (1995), Pentium II (1997)
n  New microarchitecture (see Colwell, The Pentium Chronicles)

n  Pentium III (1999)
n  Added SSE (Streaming SIMD Extensions) and associated

 registers
n  Pentium 4 (2001)

n  New microarchitecture
n  Added SSE2 instructions

Chapter 2 — Instructions: Language of the Computer — 89

The Intel x86 ISA
n  And further…

n  AMD64 (2003): extended architecture to 64 bits
n  EM64T – Extended Memory 64 Technology (2004)

n  AMD64 adopted by Intel (with refinements)
n  Added SSE3 instructions

n  Intel Core (2006)
n  Added SSE4 instructions, virtual machine support

n  AMD64 (announced 2007): SSE5 instructions
n  Intel declined to follow, instead…

n  Advanced Vector Extension (announced 2008)
n  Longer SSE registers, more instructions

n  If Intel didn’t extend with compatibility, its
 competitors would!
n  Technical elegance ≠ market success

Chapter 2 — Instructions: Language of the Computer — 90

Basic x86 Registers

Chapter 2 — Instructions: Language of the Computer — 91

Basic x86 Addressing Modes
n  Two operands per instruction

Source/dest operand Second source operand
Register Register
Register Immediate
Register Memory
Memory Register
Memory Immediate

n  Memory addressing modes
n  Address in register
n  Address = Rbase + displacement
n  Address = Rbase + 2scale × Rindex (scale = 0, 1, 2, or 3)
n  Address = Rbase + 2scale × Rindex + displacement

Chapter 2 — Instructions: Language of the Computer — 92

x86 Instruction Encoding
n  Variable length encoding

n  Postfix bytes specify
 addressing mode

n  Prefix bytes modify
 operation

n  Operand length, repetition,
 locking, …

Chapter 2 — Instructions: Language of the Computer — 93

Implementing IA-32
n  Complex instruction set makes

 implementation difficult
n  Hardware translates instructions to simpler

 microoperations
n  Simple instructions: 1–1
n  Complex instructions: 1–many

n  Microengine similar to RISC
n  Market share makes this economically viable

n  Comparable performance to RISC
n  Compilers avoid complex instructions

Chapter 2 — Instructions: Language of the Computer — 94

Fallacies
n  Fallacy: More powerful instructions means

 higher performance
n  Fewer instructions required
n  But complex instructions are hard to

 implement
n  May slow down all instructions, including simple

 ones
n  Compilers are good at making fast code from

 simple instructions

§2.18 Fallacies and P
itfalls

Chapter 2 — Instructions: Language of the Computer — 95

Fallacies
n  Fallacy: Write in assembly language to

 obtain the highest performance
n  But modern compilers are better at dealing

 with modern processors
n  More lines of code ⇒ more errors and less

 productivity

Chapter 2 — Instructions: Language of the Computer — 96

Fallacies
n  Fallacy: The importance of commercial binary

 compatibility means successful instruction set
 don’t change
n  Backward compatibility is sacrosanct !
n  But they do accrete more instructions
n  X86: 1 instruction/month !

x86 instruction set

Chapter 2 — Instructions: Language of the Computer — 97

Pitfalls
n  Pitfall: Forgetting that sequential word address in

 machines with byte addressing do not differ by
 one
n  Sequential words addresses are not at sequential byte

 addresses
n  Increment by 4, not by 1!

Chapter 2 — Instructions: Language of the Computer — 98

Concluding Remarks
n  Design principles

1. Simplicity favors regularity
2. Smaller is faster
3. Make the common case fast
4. Good design demands good compromises

n  Layers of software/hardware
n  Compiler, assembler, hardware

n  MIPS: typical of RISC ISAs
n  Cf. x86

§2.19 C
oncluding R

em
arks

Chapter 2 — Instructions: Language of the Computer — 99

Concluding Remarks
n  Measure MIPS instruction executions in

 benchmark programs
n  Consider making the common case fast
n  Consider compromises

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP

Arithmetic add, sub, addi 16% 48%

Data transfer lw, sw, lb, lbu,
lh, lhu, sb, lui

35% 36%

Logical and, or, nor, andi,
ori, sll, srl

12% 4%

Cond. Branch beq, bne, slt,
slti, sltiu

34% 8%

Jump j, jr, jal 2% 0%

